京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS操作:多个独立样本的非参数检验及两两比较
一、问题与数据
某研究者想探讨不同体力活动的人,应对职场压力的能力是否不同。因此,研究招募了31名研究对象,测量了他们每周进行体力活动的时间(分钟),以及应对职场压力的能力。
根据体力活动的时间长短,研究对象被分为4组:久坐组、低、中、高体力活动组(变量名为group)。利用Likert量表调查的总得分(CWWS得分)来评估应对职场压力的能力,分数越高,表明应对职场压力的能力越强(变量名为coping_stress)。部分数据如下图。
二、对问题的分析
研究者想知道不同体力活动组之间CWWS得分是否不同,可以使用Kruskal-Wallis H检验。Kruskal-Wallis H检验(有时也叫做对秩次的单因素方差分析)是基于秩次的非参数检验方法,用于检验多组间(也可以是两组)连续或有序变量是否存在差异。
使用Kruskal-Wallis H test进行分析时,需要考虑以下3个假设。
假设1:有一个因变量,且因变量为连续变量或等级变量。
假设2:存在多个分组(≥2个)。
假设3:具有相互独立的观测值,如本研究中各位研究对象的信息都是独立的,不存在相互干扰作用。
三、SPSS操作
1. Kruskal-Wallis H检验
在主界面点击Analyze→Nonparametric Tests→Independent Samples,出现Nonparametric Tests: Two or More Independent Samples对话框,默认选择Automatically compare distributions across groups。
点击Fields,在Fields下方选择Use custom field assignments,将变量coping_stress放入Test Fields框中,将变量group放入Groups框中。
点击Settings→Customize tests,在Compare Median Difference to Hypothesized区域选择Kruskal-Wallis 1-way ANOVA (k samples),如下图。本步骤也可不操作,默认即可。因为我们选择了Automatically compare distributions across groups,且有3个分组, SPSS会默认选择Kruskal-Wallis 1-way ANOVA (k samples)。
点击Run,输出结果。
2. 对数据分布的了解
Kruskal-Wallis H 检验,其原理是将原始数据排序后分配秩次,再对秩次做假设检验。因此,统计描述只能描述各组数据的“平均秩次”,假设检验的结果也只能表述为“各组数据分布的差异有/无统计学意义”。然而,“平均秩次”并不能充分反映各组数据的集中趋势。
我们知道,对于非正态分布数据,描述其集中趋势的较好指标是中位数(相对应的,对于正态分布数据,描述其集中趋势的较好指标是均数)。因此,在做Kruskal-Wallis H 检验(以及Mann-Whitney U检验/Wilcoxon秩和检验)前,需要首先对原始数据的分布形态做一个了解。
假设某研究关注不同教育程度(高中及以下、本科、硕士及以上)研究对象的年均收入,则年均收入的分布可能有2种情况(如下图)。左侧的图表示各组年均收入的分布形状一致(分布形状一致代表变异一致),而右侧的图表示各组年均收入的分布形状不一致。
因此,在做Kruskal-Wallis H 检验(以及Mann-Whitney U检验/Wilcoxon秩和检验)前,需要画直方图对各组数据的分布形状做一个了解(本例的模拟数据量较少,因此省去画直方图的操作。实际研究中,应当首先做直方图)。
如果实际研究中,各组因变量的分布形状基本一致,则需要计算各组因变量的中位数,以便统计描述时汇报。如果各组因变量的分布形状不一致,则在统计描述时不必汇报。
3. 计算中位数
Kruskal-Wallis H 检验并不直接给出中位数的具体数值,因此需要单独计算中位数。在主界面栏中点击Analyze→Compare Means,在Means对话框中,将coping_stress选入Dependent List框中,将group选入Independent List框中。
点击Options,出现Means: Options对话框。将Cell Statistics框中的“Mean”和“Standard Deviation”选回Statistics框中,并将“Median” 从Statistics框中选入Cell Statistics框中。点击Continue→OK。
四、结果解释
1. Kruskal-Wallis H检验
Kruskal-Wallis H检验的最终结果如下图。
双击Hypothesis Test Summary,启动Model Viewer窗口。Model Viewer窗口右上方的“Independent-Samples Kruskal-Wallis Test”箱式图反映了各组CWWS评分的中位数和分布情况。
Model Viewer窗口右下方Asymptotic Sig. (2-sided test)对应的P值与Hypothesis Test Summary中的P值一样。如下图。
基于以上结果,可以认为各组CWWS评分的分布不全相同,差异具有统计学意义(H = 14.468,P=0.002)。
2. 两两比较
虽然得到了各组CWWS评分的分布不全相同的结论,但我们仍然不清楚到底是哪两组之间不同,因此需要进一步两两比较。
点击Model Viewer右侧下方的View处,选择“Pairwise Comparisons”选项。
点击后,Pairwise Comparisons的右侧视图出现两两比较的结果。
在Pairwise Comparisons of Physical Activity Level图中,圆点旁边的数值代表该组的平均秩次。连接线代表两两比较的结果,黑色连接线代表两组间差异无统计学意义,橘黄色连接线代表两组差异具有统计学意义。
表格给出了更多的信息:比较的组别、统计量、标准误、标准化的统计量(=统计量/标准误)、P值和调整后的P值。
由于是事后的两两比较(Post hoc test),因此需要调整显著性水平(调整α水平),作为判断两两比较的显著性水平。依据Bonferroni法,调整α水平=原α水平÷比较次数。例如本研究共比较了6次,调整α水平=0.05÷6=0.0083。因此,最终得到的P值(上图中Sig.一列),需要和0.0083比较,小于0.0083则认为差异有统计学意义。
另外,SPSS也提供了调整后P值(上图中Adj. Sig.一列),其思想还是采用Bonferroni法调整α水平。该列是将原始P值(图中Sig.一列)乘以比较次数得到,因此可以直接和0.05比较,小于0.05则认为差异有统计学意义。
值得注意的是,中度体力活动和高度体力活动比较时(最后一行),原始P=0.829,而调整后P=1(不等于0.829的6倍)。这是因为,P的最大值为1。
以上结果可以描述为:采用Bonferroni法校正显著性水平的事后两两比较发现,CWWS评分的分布在久坐组和中度体力活动组(调整后P=0.008)、久坐组和高体力活动组(调整后P=0.005)的差异有统计学意义,其它组之间的差异无统计学意义。
3. 描述中位数
假设本研究中,各组CWWS评分的分布形状基本一致,则报告结果时还应该报告各组CWWS评分的中位数。Report表格给出了中位数及样本数。
五、撰写结论
1. 各组CWWS评分的分布形状基本一致时
比较不同体力活动组中CWWS评分的分布差异,采用Kruskal-Wallis H检验。根据直方图判断各组中CWWS评分分布的形状基本一致。各组CWWS评分的分布不全相同,差异具有统计学意义(H= 14.468, P=0.002)。
久坐组CWWS评分中位数为4.12 (n=7),低体力活动组CWWS评分中位数为5.50 (n=9),中度体力活动组CWWS评分中位数为7.10 (n=8),高体力活动组CWWS评分中位数为7.47 (n=7),总的CWWS评分中位数为5.97 (n=31)。
采用Bonferroni法校正显著性水平的事后两两比较发现,CWWS评分的分布在久坐组和中度体力活动组(调整后P=0.008)、久坐组和高体力活动组(调整后P=0.005)的差异有统计学意义,其它组之间的差异无统计学意义。
2. 各组CWWS评分的分布形状不一致时
比较不同体力活动组中CWWS评分的分布差异,采用Kruskal-Wallis H检验。根据直方图判断各组中CWWS评分分布的形状不一致。各组CWWS评分的分布不全相同,差异具有统计学意义(H= 14.468, P=0.002)。
久坐组CWWS评分平均秩次为6.00 (n=7),低体力活动组CWWS评分平均秩次为14.44 (n=9),中度体力活动组CWWS评分平均秩次为21.13 (n=8),高体力活动组CWWS评分平均秩次为22.14 (n=7)。
采用Bonferroni法校正显著性水平的事后两两比较发现,CWWS评分的分布在久坐组和中度体力活动组 (调整后P=0.008)、久坐组和高体力活动组 (调整后P=0.005) 的差异有统计学意义,其它组之间的差异无统计学意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27