SPSS操作:多个独立样本的非参数检验及两两比较
一、问题与数据
某研究者想探讨不同体力活动的人,应对职场压力的能力是否不同。因此,研究招募了31名研究对象,测量了他们每周进行体力活动的时间(分钟),以及应对职场压力的能力。
根据体力活动的时间长短,研究对象被分为4组:久坐组、低、中、高体力活动组(变量名为group)。利用Likert量表调查的总得分(CWWS得分)来评估应对职场压力的能力,分数越高,表明应对职场压力的能力越强(变量名为coping_stress)。部分数据如下图。
二、对问题的分析
研究者想知道不同体力活动组之间CWWS得分是否不同,可以使用Kruskal-Wallis H检验。Kruskal-Wallis H检验(有时也叫做对秩次的单因素方差分析)是基于秩次的非参数检验方法,用于检验多组间(也可以是两组)连续或有序变量是否存在差异。
使用Kruskal-Wallis H test进行分析时,需要考虑以下3个假设。
假设1:有一个因变量,且因变量为连续变量或等级变量。
假设2:存在多个分组(≥2个)。
假设3:具有相互独立的观测值,如本研究中各位研究对象的信息都是独立的,不存在相互干扰作用。
三、SPSS操作
1. Kruskal-Wallis H检验
在主界面点击Analyze→Nonparametric Tests→Independent Samples,出现Nonparametric Tests: Two or More Independent Samples对话框,默认选择Automatically compare distributions across groups。
点击Fields,在Fields下方选择Use custom field assignments,将变量coping_stress放入Test Fields框中,将变量group放入Groups框中。
点击Settings→Customize tests,在Compare Median Difference to Hypothesized区域选择Kruskal-Wallis 1-way ANOVA (k samples),如下图。本步骤也可不操作,默认即可。因为我们选择了Automatically compare distributions across groups,且有3个分组, SPSS会默认选择Kruskal-Wallis 1-way ANOVA (k samples)。
点击Run,输出结果。
2. 对数据分布的了解
Kruskal-Wallis H 检验,其原理是将原始数据排序后分配秩次,再对秩次做假设检验。因此,统计描述只能描述各组数据的“平均秩次”,假设检验的结果也只能表述为“各组数据分布的差异有/无统计学意义”。然而,“平均秩次”并不能充分反映各组数据的集中趋势。
我们知道,对于非正态分布数据,描述其集中趋势的较好指标是中位数(相对应的,对于正态分布数据,描述其集中趋势的较好指标是均数)。因此,在做Kruskal-Wallis H 检验(以及Mann-Whitney U检验/Wilcoxon秩和检验)前,需要首先对原始数据的分布形态做一个了解。
假设某研究关注不同教育程度(高中及以下、本科、硕士及以上)研究对象的年均收入,则年均收入的分布可能有2种情况(如下图)。左侧的图表示各组年均收入的分布形状一致(分布形状一致代表变异一致),而右侧的图表示各组年均收入的分布形状不一致。
因此,在做Kruskal-Wallis H 检验(以及Mann-Whitney U检验/Wilcoxon秩和检验)前,需要画直方图对各组数据的分布形状做一个了解(本例的模拟数据量较少,因此省去画直方图的操作。实际研究中,应当首先做直方图)。
如果实际研究中,各组因变量的分布形状基本一致,则需要计算各组因变量的中位数,以便统计描述时汇报。如果各组因变量的分布形状不一致,则在统计描述时不必汇报。
3. 计算中位数
Kruskal-Wallis H 检验并不直接给出中位数的具体数值,因此需要单独计算中位数。在主界面栏中点击Analyze→Compare Means,在Means对话框中,将coping_stress选入Dependent List框中,将group选入Independent List框中。
点击Options,出现Means: Options对话框。将Cell Statistics框中的“Mean”和“Standard Deviation”选回Statistics框中,并将“Median” 从Statistics框中选入Cell Statistics框中。点击Continue→OK。
四、结果解释
1. Kruskal-Wallis H检验
Kruskal-Wallis H检验的最终结果如下图。
双击Hypothesis Test Summary,启动Model Viewer窗口。Model Viewer窗口右上方的“Independent-Samples Kruskal-Wallis Test”箱式图反映了各组CWWS评分的中位数和分布情况。
Model Viewer窗口右下方Asymptotic Sig. (2-sided test)对应的P值与Hypothesis Test Summary中的P值一样。如下图。
基于以上结果,可以认为各组CWWS评分的分布不全相同,差异具有统计学意义(H = 14.468,P=0.002)。
2. 两两比较
虽然得到了各组CWWS评分的分布不全相同的结论,但我们仍然不清楚到底是哪两组之间不同,因此需要进一步两两比较。
点击Model Viewer右侧下方的View处,选择“Pairwise Comparisons”选项。
点击后,Pairwise Comparisons的右侧视图出现两两比较的结果。
在Pairwise Comparisons of Physical Activity Level图中,圆点旁边的数值代表该组的平均秩次。连接线代表两两比较的结果,黑色连接线代表两组间差异无统计学意义,橘黄色连接线代表两组差异具有统计学意义。
表格给出了更多的信息:比较的组别、统计量、标准误、标准化的统计量(=统计量/标准误)、P值和调整后的P值。
由于是事后的两两比较(Post hoc test),因此需要调整显著性水平(调整α水平),作为判断两两比较的显著性水平。依据Bonferroni法,调整α水平=原α水平÷比较次数。例如本研究共比较了6次,调整α水平=0.05÷6=0.0083。因此,最终得到的P值(上图中Sig.一列),需要和0.0083比较,小于0.0083则认为差异有统计学意义。
另外,SPSS也提供了调整后P值(上图中Adj. Sig.一列),其思想还是采用Bonferroni法调整α水平。该列是将原始P值(图中Sig.一列)乘以比较次数得到,因此可以直接和0.05比较,小于0.05则认为差异有统计学意义。
值得注意的是,中度体力活动和高度体力活动比较时(最后一行),原始P=0.829,而调整后P=1(不等于0.829的6倍)。这是因为,P的最大值为1。
以上结果可以描述为:采用Bonferroni法校正显著性水平的事后两两比较发现,CWWS评分的分布在久坐组和中度体力活动组(调整后P=0.008)、久坐组和高体力活动组(调整后P=0.005)的差异有统计学意义,其它组之间的差异无统计学意义。
3. 描述中位数
假设本研究中,各组CWWS评分的分布形状基本一致,则报告结果时还应该报告各组CWWS评分的中位数。Report表格给出了中位数及样本数。
五、撰写结论
1. 各组CWWS评分的分布形状基本一致时
比较不同体力活动组中CWWS评分的分布差异,采用Kruskal-Wallis H检验。根据直方图判断各组中CWWS评分分布的形状基本一致。各组CWWS评分的分布不全相同,差异具有统计学意义(H= 14.468, P=0.002)。
久坐组CWWS评分中位数为4.12 (n=7),低体力活动组CWWS评分中位数为5.50 (n=9),中度体力活动组CWWS评分中位数为7.10 (n=8),高体力活动组CWWS评分中位数为7.47 (n=7),总的CWWS评分中位数为5.97 (n=31)。
采用Bonferroni法校正显著性水平的事后两两比较发现,CWWS评分的分布在久坐组和中度体力活动组(调整后P=0.008)、久坐组和高体力活动组(调整后P=0.005)的差异有统计学意义,其它组之间的差异无统计学意义。
2. 各组CWWS评分的分布形状不一致时
比较不同体力活动组中CWWS评分的分布差异,采用Kruskal-Wallis H检验。根据直方图判断各组中CWWS评分分布的形状不一致。各组CWWS评分的分布不全相同,差异具有统计学意义(H= 14.468, P=0.002)。
久坐组CWWS评分平均秩次为6.00 (n=7),低体力活动组CWWS评分平均秩次为14.44 (n=9),中度体力活动组CWWS评分平均秩次为21.13 (n=8),高体力活动组CWWS评分平均秩次为22.14 (n=7)。
采用Bonferroni法校正显著性水平的事后两两比较发现,CWWS评分的分布在久坐组和中度体力活动组 (调整后P=0.008)、久坐组和高体力活动组 (调整后P=0.005) 的差异有统计学意义,其它组之间的差异无统计学意义。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03