
量化投资已成为穿越“牛熊”的利器, 前景广阔
量化投资是一种依托计算机构建模型再投资的策略。从长期业绩表现看,量化基金具备业绩稳健、资产管理规模大、分散化投资、不带有主观投资情绪等优势,被称为穿越“牛熊”的利器。
▲大类资产配置需求给量化投资带来了全新的发展机遇。随着技术门槛的降低以及大数据、人工智能的应用,任何投资者都可以将量化投资应用到自身资产组合当中,广大中小投资者也可以为自己定制量化投资产品。
如果从2007年大批海外量化基金投资人才归国算起,我国量化投资基金行业已走过10年历程。从最初不为人知到成为公募行业名片,从单一的量化对冲产品到多策略量化组合,从震荡市大放异彩到单边行情下饱受质疑……这一全新的投资方式正在被各类资管机构接受,尤其是公募量化证券投资基金因其高门槛、大规模、运作透明规范的标准化特点,被广大中小投资者热捧。
穿越“牛熊”的利器
量化投资是一种依托计算机构建模型再投资的策略。其投资逻辑在于从海量的历史数据中寻找能带来超额收益的多种“大概率”事件,并严格地按照这些策略构建的数量化模型来投资。本质上,量化投资是利用计算机和数据运算,寻找市场定价偏差的一种“投机”策略。
量化投资区别于定性投资的鲜明特征是构建模型。“每个模型由很多因子组成,每个因子本质上都是基金经理眼中的一个赚钱的观点。例如,投资者情绪因子,是将投资者情绪变化作量化统计,作为筛选股票投资的决策依据。”华泰柏瑞基金副总经理田汉卿认为,定性投资和定量投资的具体做法有些差异,如同中医和西医的差异,定性投资更像中医,依靠经验和感觉判断。定量投资更像是西医,依靠模型判断,模型对于定量投资基金经理的作用就像CT机对于医生的作用。
量化投资在国外已有30多年的发展史,因其稳健的业绩广受投资者认可。曾是数学老师的美国量化基金经理西蒙斯管理的大奖章基金,在1989年到2007年取得了平均年收益高达35%的佳绩。国内首只量化公募基金——光大保德信量化核心诞生于2004年,但国内量化投资基金真正开始发展始于2007年大批海外量化人才回国管理产品。
Wind资讯显示,截至7月24日,目前市场上存续的公募量化证券投资基金达184只,其中成立年限不足1年的达85只,不足2年的达124只,成立年限超过10年的仅有光大核心、博时裕富沪深300A、上投摩根阿尔法等3只基金。
这180余只量化基金中,截至7月25日,具备可比数据的22只基金近5年的投资回报率高达117.10%,远高于同期沪深300指数、中证500指数等被动指数类产品,甚至好于大多数主动管理类股票型基金。
“量化+”前景广阔
3年前,量化对冲产品曾风靡一时,部分公募基金公司一度密集发行,但受到对冲工具限制,这类产品近期逐渐归于平静,业绩表现平平,市场对于量化投资策略有效性的质疑声开始出现。
“量化对冲产品的发展规律说明,量化投资最大的困难有两方面:一是量化投资模型同质化,参与的人多了会失效,这就要求开发者在策略研发上不断拓展。其次,仅靠量化模型做量化已不能满足市场需求,必须通过‘量化+’寻找新的投资领域和投资机会。例如,分级基金套利、商品期权等都可以应用量化模型。总之,量化投资的发展不能局限于传统股票池。”艾方资产总经理兼投资总监蒋锴说。
针对“量化+”的发展思路,富善投资总经理兼投资总监林成栋认为:“当前几大发展趋势决定了量化投资必须‘走出去’,这也是未来投资者继续看好量化基金的关键:一是大类资产配置需求带来的全新量化投资发展机遇,二是量化策略和主动投资策略相结合。基本面投资和量化投资并不矛盾,中西医也可以实现良好的互动和融合发展,量化投资管理人应多学习宏观基本面的研究方法,将纯量化的策略与传统主观策略相结合,有望产生新的‘化学反应’。”
之所以应用更多的“量化+”策略,也有预防“业绩地雷”“业绩变脸”等事件的考虑。“随着2017年上市公司中报发布,业绩变脸的公司开始增多。要预防业绩变脸,需要重点过滤那些长期业绩稳健、信息披露规范、数据规范的公司,那些业绩数据不稳定的公司,‘变脸’概率较大。”泰达宏利业绩驱动量化股票型基金的拟任基金经理杨超表示,从稳健的业绩到业绩变脸的判断,不是一天之间形成,需要通过量化投资的方法长期对公司基本面研究并预判。
定制型量化值得期待
从量化投资基金的发展趋势看,无论是“量化+”还是多策略量化的应用,都说明量化投资已不再是一种单纯的投资产品、单一的投资策略,而是更加偏向工具化、模块化发展。通俗地说,随着技术门槛的降低以及大数据、人工智能的应用,任何投资者都可以将量化投资应用到自身资产组合当中,广大中小投资者也可以为自己定制量化投资产品。
业内人士表示,计算机决策有很大局限性,最大缺陷就是没有前瞻性,因为它是基于历史数据和历史检验的结论,其逻辑是历史会重复。市场环境是不断变化的,长期看,要战胜市场必须具有前瞻性,顶尖的基金管理人如巴菲特和索罗斯都具备这一特征。如果将量化投资、人工智能仅仅视为一种投资工具,将两者的优点和传统主动管理类投资方法整合起来改良量化基金产品,则有可能产生全新的定制型、聪明的量化基金。目前,国内一些阳光私募基金已开始将人工智能的三个子领域——机器学习、自然语言处理、知识图谱,融入自身策略中,尝试获取“聪明”的收益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29CDA 数据分析与量化策略分析流程:协同落地数据驱动价值 在数据驱动决策的实践中,“流程” 是确保价值落地的核心骨架 ——CDA ...
2025-08-29CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-28CDA认证:数据时代的职业通行证 当海通证券的交易大厅里闪烁的屏幕实时跳动着市场数据,当苏州银行的数字金融部连夜部署新的风控 ...
2025-08-28PCU:游戏运营的 “实时晴雨表”—— 从数据监控到运营决策的落地指南 在游戏行业,DAU(日活跃用户)、MAU(月活跃用户)是衡量 ...
2025-08-28Excel 聚类分析:零代码实现数据分群,赋能中小团队业务决策 在数字化转型中,“数据分群” 是企业理解用户、优化运营的核心手段 ...
2025-08-28CDA 数据分析师:数字化时代数据思维的践行者与价值推动者 当数字经济成为全球经济增长的核心引擎,数据已从 “辅助性信息” 跃 ...
2025-08-28ALTER TABLE ADD 多个 INDEX:数据库批量索引优化的高效实践 在数据库运维与性能优化中,索引是提升查询效率的核心手段。当业务 ...
2025-08-27Power BI 去重函数:数据清洗与精准分析的核心工具 在企业数据分析流程中,数据质量直接决定分析结果的可靠性。Power BI 作为主 ...
2025-08-27CDA 数据分析师:数据探索与统计分析的实践与价值 在数字化浪潮席卷各行业的当下,数据已成为企业核心资产,而 CDA(Certif ...
2025-08-27t 检验与 Wilcoxon 检验:数据差异比较的两大统计利器 在数据分析中,“比较差异” 是核心需求之一 —— 如新药疗效是否优于旧药 ...
2025-08-26季节性分解外推法:解锁时间序列预测的规律密码 在商业决策、资源调度、政策制定等领域,准确的预测是规避风险、提升效率的关键 ...
2025-08-26CDA 数据分析师:数据治理驱动下的企业数据价值守护者 在数字经济时代,数据已成为企业核心战略资产,其价值的释放离不开高 ...
2025-08-26基于 SPSS 的 ROC 曲线平滑调整方法与实践指南 摘要 受试者工作特征曲线(ROC 曲线)是评估诊断模型或预测指标效能的核心工具, ...
2025-08-25神经网络隐藏层神经元个数的确定方法与实践 摘要 在神经网络模型设计中,隐藏层神经元个数的确定是影响模型性能、训练效率与泛 ...
2025-08-25CDA 数据分析师与数据思维:驱动企业管理升级的核心力量 在数字化浪潮席卷全球的当下,数据已成为企业继人力、物力、财力之后的 ...
2025-08-25CDA数据分析师与数据指标:基础概念与协同逻辑 一、CDA 数据分析师:数据驱动时代的核心角色 1.1 定义与行业价值 CDA(Certified ...
2025-08-22Power Query 移动加权平均计算 Power Query 移动加权平均设置全解析:从原理到实战 一、移动加权平均法的核心逻辑 移动加权平均 ...
2025-08-22描述性统计:CDA数据分析师的基础核心与实践应用 一、描述性统计的定位:CDA 认证的 “入门基石” 在 CDA(Certified Data Analy ...
2025-08-22