
量化投资已成为穿越“牛熊”的利器, 前景广阔
量化投资是一种依托计算机构建模型再投资的策略。从长期业绩表现看,量化基金具备业绩稳健、资产管理规模大、分散化投资、不带有主观投资情绪等优势,被称为穿越“牛熊”的利器。
▲大类资产配置需求给量化投资带来了全新的发展机遇。随着技术门槛的降低以及大数据、人工智能的应用,任何投资者都可以将量化投资应用到自身资产组合当中,广大中小投资者也可以为自己定制量化投资产品。
如果从2007年大批海外量化基金投资人才归国算起,我国量化投资基金行业已走过10年历程。从最初不为人知到成为公募行业名片,从单一的量化对冲产品到多策略量化组合,从震荡市大放异彩到单边行情下饱受质疑……这一全新的投资方式正在被各类资管机构接受,尤其是公募量化证券投资基金因其高门槛、大规模、运作透明规范的标准化特点,被广大中小投资者热捧。
穿越“牛熊”的利器
量化投资是一种依托计算机构建模型再投资的策略。其投资逻辑在于从海量的历史数据中寻找能带来超额收益的多种“大概率”事件,并严格地按照这些策略构建的数量化模型来投资。本质上,量化投资是利用计算机和数据运算,寻找市场定价偏差的一种“投机”策略。
量化投资区别于定性投资的鲜明特征是构建模型。“每个模型由很多因子组成,每个因子本质上都是基金经理眼中的一个赚钱的观点。例如,投资者情绪因子,是将投资者情绪变化作量化统计,作为筛选股票投资的决策依据。”华泰柏瑞基金副总经理田汉卿认为,定性投资和定量投资的具体做法有些差异,如同中医和西医的差异,定性投资更像中医,依靠经验和感觉判断。定量投资更像是西医,依靠模型判断,模型对于定量投资基金经理的作用就像CT机对于医生的作用。
量化投资在国外已有30多年的发展史,因其稳健的业绩广受投资者认可。曾是数学老师的美国量化基金经理西蒙斯管理的大奖章基金,在1989年到2007年取得了平均年收益高达35%的佳绩。国内首只量化公募基金——光大保德信量化核心诞生于2004年,但国内量化投资基金真正开始发展始于2007年大批海外量化人才回国管理产品。
Wind资讯显示,截至7月24日,目前市场上存续的公募量化证券投资基金达184只,其中成立年限不足1年的达85只,不足2年的达124只,成立年限超过10年的仅有光大核心、博时裕富沪深300A、上投摩根阿尔法等3只基金。
这180余只量化基金中,截至7月25日,具备可比数据的22只基金近5年的投资回报率高达117.10%,远高于同期沪深300指数、中证500指数等被动指数类产品,甚至好于大多数主动管理类股票型基金。
“量化+”前景广阔
3年前,量化对冲产品曾风靡一时,部分公募基金公司一度密集发行,但受到对冲工具限制,这类产品近期逐渐归于平静,业绩表现平平,市场对于量化投资策略有效性的质疑声开始出现。
“量化对冲产品的发展规律说明,量化投资最大的困难有两方面:一是量化投资模型同质化,参与的人多了会失效,这就要求开发者在策略研发上不断拓展。其次,仅靠量化模型做量化已不能满足市场需求,必须通过‘量化+’寻找新的投资领域和投资机会。例如,分级基金套利、商品期权等都可以应用量化模型。总之,量化投资的发展不能局限于传统股票池。”艾方资产总经理兼投资总监蒋锴说。
针对“量化+”的发展思路,富善投资总经理兼投资总监林成栋认为:“当前几大发展趋势决定了量化投资必须‘走出去’,这也是未来投资者继续看好量化基金的关键:一是大类资产配置需求带来的全新量化投资发展机遇,二是量化策略和主动投资策略相结合。基本面投资和量化投资并不矛盾,中西医也可以实现良好的互动和融合发展,量化投资管理人应多学习宏观基本面的研究方法,将纯量化的策略与传统主观策略相结合,有望产生新的‘化学反应’。”
之所以应用更多的“量化+”策略,也有预防“业绩地雷”“业绩变脸”等事件的考虑。“随着2017年上市公司中报发布,业绩变脸的公司开始增多。要预防业绩变脸,需要重点过滤那些长期业绩稳健、信息披露规范、数据规范的公司,那些业绩数据不稳定的公司,‘变脸’概率较大。”泰达宏利业绩驱动量化股票型基金的拟任基金经理杨超表示,从稳健的业绩到业绩变脸的判断,不是一天之间形成,需要通过量化投资的方法长期对公司基本面研究并预判。
定制型量化值得期待
从量化投资基金的发展趋势看,无论是“量化+”还是多策略量化的应用,都说明量化投资已不再是一种单纯的投资产品、单一的投资策略,而是更加偏向工具化、模块化发展。通俗地说,随着技术门槛的降低以及大数据、人工智能的应用,任何投资者都可以将量化投资应用到自身资产组合当中,广大中小投资者也可以为自己定制量化投资产品。
业内人士表示,计算机决策有很大局限性,最大缺陷就是没有前瞻性,因为它是基于历史数据和历史检验的结论,其逻辑是历史会重复。市场环境是不断变化的,长期看,要战胜市场必须具有前瞻性,顶尖的基金管理人如巴菲特和索罗斯都具备这一特征。如果将量化投资、人工智能仅仅视为一种投资工具,将两者的优点和传统主动管理类投资方法整合起来改良量化基金产品,则有可能产生全新的定制型、聪明的量化基金。目前,国内一些阳光私募基金已开始将人工智能的三个子领域——机器学习、自然语言处理、知识图谱,融入自身策略中,尝试获取“聪明”的收益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
2025 年,数据如同数字时代的 DNA,编码着人类社会的未来图景,驱动着商业时代的运转。从全球互联网用户每天产生的2.5亿TB数据, ...
2025-05-27CDA数据分析师证书考试体系(更新于2025年05月22日)
2025-05-26解码数据基因:从数字敏感度到逻辑思维 每当看到超市货架上商品的排列变化,你是否会联想到背后的销售数据波动?三年前在零售行 ...
2025-05-23在本文中,我们将探讨 AI 为何能够加速数据分析、如何在每个步骤中实现数据分析自动化以及使用哪些工具。 数据分析中的AI是什么 ...
2025-05-20当数据遇见人生:我的第一个分析项目 记得三年前接手第一个数据分析项目时,我面对Excel里密密麻麻的销售数据手足无措。那些跳动 ...
2025-05-20在数字化运营的时代,企业每天都在产生海量数据:用户点击行为、商品销售记录、广告投放反馈…… 这些数据就像散落的拼图,而相 ...
2025-05-19在当今数字化营销时代,小红书作为国内领先的社交电商平台,其销售数据蕴含着巨大的商业价值。通过对小红书销售数据的深入分析, ...
2025-05-16Excel作为最常用的数据分析工具,有没有什么工具可以帮助我们快速地使用excel表格,只要轻松几步甚至输入几项指令就能搞定呢? ...
2025-05-15数据,如同无形的燃料,驱动着现代社会的运转。从全球互联网用户每天产生的2.5亿TB数据,到制造业的传感器、金融交易 ...
2025-05-15大数据是什么_数据分析师培训 其实,现在的大数据指的并不仅仅是海量数据,更准确而言是对大数据分析的方法。传统的数 ...
2025-05-14CDA持证人简介: 万木,CDA L1持证人,某电商中厂BI工程师 ,5年数据经验1年BI内训师,高级数据分析师,拥有丰富的行业经验。 ...
2025-05-13CDA持证人简介: 王明月 ,CDA 数据分析师二级持证人,2年数据产品工作经验,管理学博士在读。 学习入口:https://edu.cda.cn/g ...
2025-05-12CDA持证人简介: 杨贞玺 ,CDA一级持证人,郑州大学情报学硕士研究生,某上市公司数据分析师。 学习入口:https://edu.cda.cn/g ...
2025-05-09CDA持证人简介 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度、美团、阿里等 ...
2025-05-07相信很多做数据分析的小伙伴,都接到过一些高阶的数据分析需求,实现的过程需要用到一些数据获取,数据清洗转换,建模方法等,这 ...
2025-05-06以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda.cn/g ...
2025-04-30CDA持证人简介: 邱立峰 CDA 数据分析师二级持证人,数字化转型专家,数据治理专家,高级数据分析师,拥有丰富的行业经验。 ...
2025-04-29CDA持证人简介: 程靖 CDA会员大咖,畅销书《小白学产品》作者,13年顶级互联网公司产品经理相关经验,曾在百度,美团,阿里等 ...
2025-04-28CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-27数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25