京公网安备 11010802034615号
经营许可证编号:京B2-20210330
惊人大数据创造效率和价值
数据成为流入全球经济每一个领域的洪流1.企业产生了数量迅速增加的交易数据,获取着有关客户、供应商和业务运营的数以Tb的信息。实体世界中,数以百万计的联网传感器被嵌入到各种设备中,例如手机、“智能”
能量计、汽车,以及在物联网时代能感知、创造和传达数据的工业机械2.的确,随着企业和组织开展经营以及与个人互动,他们产生着数量巨大的数字化“排出数据”,也就是作为其他活动的副产品而创造出的数据。社交媒体网站、智能电话以及其他消费电子设备(包括PC机和笔记本)使得全球数十亿人为可获得的大数据添砖加瓦。不断增多的多媒体内容对于“大数据”数量的指数增长起了重要作用。例如,每一秒的高清视频产生的比特量是存储一页文本所需的2,000多倍。在数字化世界中,消费者每天的生活--通讯、上网浏览、购物、分享、搜索--产生着数量庞大的数据。
我们说的“大数据”是什么意思?
大数据是指其规模超出通常的数据库软件工具的获取、存储、管理和分析能力的数据集。这一定义有意采用主观方式,包含了关于一个数据集有多大才可被视为大数据的动态定义--也就是说,我们并不从大于一定数量的Tb(1Tb等于1,024Gb)这一角度来定义大数据。我们假定,随着技术不断进步,可称为大数据的数据集的规模也将提高。另外,请注意,该定义可因经济部门而异,这取决于某一特定行业中通常可获得的软件有哪些,以及常见的数据集规模多大。有了以上说明,目前许多部门中的大数据范围为数十Tb到数Pb(1Pb等于1,024Tb)不等。
数量惊人的数据本身是一个全球性现象,但是,这意味着什么呢?全球许多公民对这一信息的集合抱以深深的怀疑,认为数据洪流不过是对其隐私的侵犯。但是,存在有力的证据表明,大数据可以发挥重要的经济作用,不但有利于私人商业活动,还有利于国民经济和公民。我们的研究发现,数据可以为世界经济创造重要价值,提高企业和公共部门的生产率和竞争力,并为消费者创造大量的经济剩余。
例如,如果美国医疗卫生部门能够富有创造性而有效地利用大数据来提高效率和质量,我们估计,该部门每年通过数据获得的潜在价值可超过3000亿美元,其中2/3将以全国医疗卫生支出降低大于8%的形式表现出来。例如,在私营部门,我们估计充分利用大数据的零售商有可能将其经营利润提高60%以上。在欧洲发达经济体中,我们估计,仅通过利用大数据实现的运作效率提高,政府行政管理方面可以节省1000亿欧元(1400亿美元)以上的开支。这一估计尚未包括可以用来减少欺诈、错误以及税差(潜在税收与实际税收收入之差)的大数据影响作用。
数字化数据现在无所不在--每个部门中,每个经济体中,每个组织以及数字技术用户中。这一话题以前只有少数数据怪杰感兴趣,而现在大数据对各个部门的领导都具有重要意义,各种产品和服务的消费者必将通过大数据的应用而受益。随着计算领域中的摩尔定律、数字存储中的类似的定律以及云计算等趋势继续降低成本以及减少其他技术壁垒,人们存储、汇聚和组合数据然后利用其结果来进行深入分析的能力超过以往任何时候。花不到600美元,就可以买到容量足以存储世界上所有音乐的硬盘.[page]
随着运用越来越尖端的技术的软件与不断提高的计算能力相结合,从数据中提取洞见的能力也在显着提高。此外,由于越来越多的人、设备和传感器通过数字网络连接起来,产生、传送、分享和访问数据的能力也得到彻底变革。2010年,超过40亿人(世界人口的60%)在使用手机,其中大约12%拥有智能电话--其渗透率以每年20%以上的速度增长。如今,3000多万联网传感器节点分布在交通、汽车、工业、公用事业和零售部门,其数量正以每年30%以上的速度增长。
可以通过许多方式来利用大数据在全球经济的各个部门中创造价值。的确,我们的研究表明,整个世界正处在一波巨大的创新、效率和增长之中,正处在竞争和价值获取的新模式的变革时代--所有这些都被大数据所推动,消费者、企业和经济部门无一不在挖掘利用大数据的潜力。但是,这一现象为何现在才发生呢?数据不是一直都是信息和通信技术的冲击中的一部分吗?是的,但是,我们的研究表明,大数据将会带来的变化的规模以及范围处在一个转折点上,随着一系列技术趋势开始加速并汇聚,必将大大扩展大数据的影响。我们已经看到这种汇聚在经济格局中带来的变化。
许多领先的企业已经在使用大数据创造价值,其他企业如果要与之竞争,需要探索如何做到这一点。政府在公共资金受到约束的时期,也面临着提高效率和为公民提供的资金带来的价值的机遇。鉴于全球许多国家人口老龄化这一现实,这一点可能非常重要。我们的研究表明,公共部门可以通过有效地使用大数据来显着提高效率。
然而,企业和其他组织以及政策制定者如果要充分发挥大数据的潜力,就需要应对很多挑战。能够掌握这些技术以获得最大价值的分析和管理人才不足,这是一个重大而紧迫的挑战,企业和政策制定者可以近期内着手解决。仅美国就短缺140,000 到 190,000具备深厚分析技能的人员,以及150万分析大数据并在其发现的基础上做出决策的管理人员和分析师。人才短缺仅仅是第一个挑战。其他挑战包括需要确保适当的基础设施落实到位,并且激励措施和竞争能够鼓励继续创新。此外,必须正确理解对于用户、组织和经济体带来的经济收益,而且必须实施安全措施,以便消除公众对大数据的担忧。
我们如何衡量大数据的价值?
当我们着手确定大数据创造价值的潜力多大时,我们只考虑了那些本质上依赖于大数据的使用的行为--也就是说,那些大数据的使用对于实施某一特定手段来说是必要(但往往未必足够)的行为。我们并未包括那些只包括自动化而并未涉及大数据的手段(例如,通过以ATM代替银行出纳而实现的生产率提高)的价值。另请注意,我们包括了需要使用大数据的手段的总价值。我们并未试图估计大数据对于某一特定手段创造的价值的相对贡献,而只是估计所创造的总价值。
我们完全可以预料,随着运用大数据的技术和技巧不断发展以及经济收益的增长(同时伴随着相关挑战和风险),有关大数据的故事将继续演变。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27