京公网安备 11010802034615号
经营许可证编号:京B2-20210330
解析Python编程中的包结构
假设你想设计一个模块集(也就是一个“包”)来统一处理声音文件和声音数据。通常由它们的扩展有不同的声音格式,例如:WAV,AIFF,AU),所以你可能需要创建和维护一个不断增长的各种文件格式之间的转换的模块集合。
并且可能要执行声音数据处理(如混合,添加回声,应用平衡功能),所以你写一个永无止境的流模块来执行这些操作:模块设计的包如下:
sound/ Top-level package
__init__.py Initialize the sound package
formats/ Subpackage for file format conversions
__init__.py
wavread.py
wavwrite.py
aiffread.py
aiffwrite.py
auread.py
auwrite.py
...
effects/ Subpackage for sound effects
__init__.py
echo.py
surround.py
reverse.py
...
filters/ Subpackage for filters
__init__.py
equalizer.py
vocoder.py
karaoke.py
...
当导入包以后,Python通过sys.path中的目录来寻找包的子目录。 每一个包都必须有__init__.py文件,这样做是为了防止某些目录有一个共同的名字。在最简单的情况下,__ init__.py可以只是一个空文件,但它也可以执行包的初始化代码,包括设置__all__变量,稍后介绍。 我们可以从包中导入单个模块,
例如: import sound.effects.echo 这会载入子模块sound.effects.echo。它必须引用全名。
sound.effects.echo.echofilter(input, output, delay=0.7, atten=4)
另外一种导入子模块的方法: from sound.effects import echo 这样就加载了echo子模块,没有包括包的前缀,因此它可以用作如下:
echo.echofilter(input, output, delay=0.7, atten=4)
或者可以
from sound.effects.echo import echofilter echofilter(input, output, delay=0.7, atten=4)
请注意,如果你使用包导入一个子模块(或子包),像一个函数,类或变量。 import语句首先测试导入的对象是否包中定义,如果没有,它假定这是一个模块,并尝试加载它。如果还没有找到,则会引发一个ImportError异常。
python 包管理工具大乱斗
1. distutils
distutils 是 python 标准库的一部分,2000年发布。使用它能够进行 python 模块的 安装 和 发布。
etup.py 就是利用 distutils 的功能写成,我们可以看一个简单的 setup.py 的例子。
在这里可以看到关于 setupt.py 格式的所有详细描述:Writing the Setup Script。
要安装一个模块到当前的 python 环境中,可以使用这个模块提供的 setup.py 文件:
python setup.py install
下面的代码会发布一个 python 模块,将其打包成 tar.gz 或者 zip 压缩包:
python setup.py sdist
甚至能打包成 rpm 或者 exe 安装包:
python setup.py bdist_rpm
python setup.py bdist_wininst
2. setuptools 和 distribute
setuptools 是一个为了增强 distutils 而开发的集合,2004年发布。它包含了 easy_install 这个工具。
ez_setup.py 是 setuptools 的安装工具。ez 就是 easy 的缩写。
简单的说,setuptools 是一个项目的名称,是基础组件。而 easy_install 是这个项目中提供的工具,它依赖基础组件工作。
为了方便描述,下面文章中提到的 setuptools 被认为与 easy_install 同义。
使用 setuptools 可以自动 下载、构建、安装和管理 python 模块。
例如,从 PyPI 上安装一个包:
easy_install SQLObject
下载一个包文件,然后安装它:
easy_install http://example.com/path/to/MyPackage-1.2.3.tgz
从一个 .egg 格式安装:
easy_install /my_downloads/OtherPackage-3.2.1-py2.3.egg
distribute 是 setuptools 的一个分支版本。分支的原因可能是有一部分开发者认为 setuptools 开发太慢了。但现在,distribute 又合并回了 setuptools 中。因此,我们可以认为它们是同一个东西。事实上,如果你查看一下 easy_install 的版本,会发现它本质上就是 distribute 。
# easy_install --version
distribute 0.6.28
3. Eggs
Eggs 格式是 setuptools 引入的一种文件格式,它使用 .egg 扩展名,用于 Python 模块的安装。
setuptools 可以识别这种格式。并解析它,安装它。
4. pip
注意,从此处开始,easy_install 和 setuptools 不再同义。
pip 是目前 python 包管理的事实标准,2008年发布。它被用作 easy_install 的替代品,但是它仍有大量的功能建立在 setuptools 组件之上。
pip 希望不再使用 Eggs 格式(虽然它支持 Eggs),而更希望采用“源码发行版”(使用 python setup.py sdict 创建)。这可以充分利用 Requirements File Format 提供的方便功能。
pip 可以利用 requirments.txt 来实现在依赖的安装。在 setup.py 中,也存在一个 install_requires 表来指定依赖的安装。
pip 支持 git/svn/hg 等流行的 VCS 系统,可以直接从 gz 或者 zip 压缩包安装,支持搜索包,以及指定服务器安装等等功能。
pip vs easy_install 详细介绍了两者的不同。它们可以说是各占胜场,但 pip 明显优势更大。
5. wheel
wheel 本质上是一个 zip 包格式,它使用 .whl 扩展名,用于 python 模块的安装,它的出现是为了替代 Eggs。
wheel 还提供了一个 bdist_wheel 作为 setuptools 的扩展命令,这个命令可以用来生成 wheel 包。
pip 提供了一个 wheel 子命令来安装 wheel 包。当然,需要先安装 wheel 模块。
setup.cfg 可以用来定义 wheel 打包时候的相关信息。
Wheel vs Egg 详细介绍了 wheel 和 Eggs 格式的区别,很显然,wheel 优势明显。
Python Wheels 网站展示了使用 Wheels 发行的 python 模块在 PyPI 上的占有率。
pypip.in 也支持 wheel。
6. distutils2 和 distlib
distutils2 被设计为 distutils 的替代品。从2009年开发到2012年。它包含更多的功能,并希望以 packaging 作为名称进入 python 3.3 成为标准库的一部分。但这个计划 后来停滞了 。
distlib 是 distutils2 的部分,它为 distutils2/packaging 提供的低级功能增加高级 API,使其便于使用。
这里 介绍了 distlib 没有进入 python 3.3 标准库的一些原因。
因此,可以暂时不必了解这两个工具,静观其变即可。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20