
Python实现计算圆周率π的值到任意位的方法示例
本文实例讲述了Python实现计算圆周率π的值到任意位的方法。分享给大家供大家参考,具体如下:
一、需求分析
输入想要计算到小数点后的位数,计算圆周率π的值。
二、算法:马青公式
π/4=4arctan1/5-arctan1/239
这个公式由英国天文学教授约翰·马青于1706年发现。他利用这个公式计算到了100位的圆周率。马青公式每计算一项可以得到1.4位的十进制精度。因为它的计算过程中被乘数和被除数都不大于长整数,所以可以很容易地在计算机上编程实现。
三、python语言编写出求圆周率到任意位的程序如下:
# -*- coding: utf-8 -*-
from __future__ import division
####################导入时间模块
import time
###############计算当前时间
time1=time.time()
################算法根据马青公式计算圆周率####################
number = int(raw_input('请输入想要计算到小数点后的位数n:'))
# 多计算10位,防止尾数取舍的影响
number1 = number+10
# 算到小数点后number1位
b = 10**number1
# 求含4/5的首项
x1 = b*4//5
# 求含1/239的首项
x2 = b// -239
# 求第一大项
he = x1+x2
#设置下面循环的终点,即共计算n项
number *= 2
#循环初值=3,末值2n,步长=2
for i in xrange(3,number,2):
# 求每个含1/5的项及符号
x1 //= -25
# 求每个含1/239的项及符号
x2 //= -57121
# 求两项之和
x = (x1+x2) // i
# 求总和
he += x
# 求出π
pai = he*4
#舍掉后十位
pai //= 10**10
############ 输出圆周率π的值
paistring=str(pai)
result=paistring[0]+str('.')+paistring[1:len(paistring)]
print result
time2=time.time()
print u'总共耗时:' + str(time2 - time1) + 's'
运行结果:
请输入想要计算到小数点后的位数n:20
3.14159265358979323846
总共耗时:9.77699995041s
请输入想要计算到小数点后的位数n:50
3.14159265358979323846264338327950288419716939937510
总共耗时:2.30099987984s
运行截图如下:
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01