京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据对移动应用程序开发有哪些影响
“什么样的应用程序是一个伟大的应用程序呢?”这个问题困扰行业专家多时,大家各执己见一直到现在都还没有定论。
如果要说“一个成功的移动应用程序开发的关键因素是什么?”那么,大数据和数据分析的贡献不可磨灭。每天客户都会产生数百万字节的数据被移动应用程序开发者利用,用户不仅需要及时了解他们的移动体验和实时情景,而且还要在多个设备上都享受到其服务,并为其决策提供足够的支撑。
使用和理解大数据
目前,用户产生的数据量已经超过PB级,原始数据或信息的数量达到了数个ZB级,并且还在增长,未来数据量预计可能会达到YB级。
事实上,之前创建的全部数据量都比现在产生的非结构化数据量要小,所以借助高级分析将这些大量数据转换为相关信息是极具价值的。在这篇文章中,我们将关注大数据如何为移动应用程序开发奠定坚实的基础,以及如何影响企业的营销结构。
制作客户驱动的移动应用程序
一个好的应用程序必须要易于使用、快速、无缺陷,极具吸引力,最重要的是,它必须能够尽可能地满足用户的需求。因此,使用大数据分析仔细分析客户,可以开发更具可用性的应用程序,并且能够真正满足客户的需求。
创新和优秀的应用程序的最佳想法的主要来自于用户体验。通过了解客户在使用应用程序时的具体行为及其与应用程序的交互方式,移动应用程序开发人员可以实现增强现有应用程序的解决方案,并为新应用程序制定以用户为导向的理念。
大数据加速用户体验分析
如前所述,应用程序开发需要全面分析客户体验。大数据概括了用户行为的全部细节,可以将用户体验融入到应用程序开发中,从而指出生动的点。然后,通过分析他们对应用程序的集体行为来传达用户的完整需求。
移动应用程序开发人员可以通过分析类似的应用程序背后的大数据,从而创建出更符合用户想法的新的应用程序。
例如,如果开发者想要创建类似健康和健身的应用程序,则可以分析者其中评分最高的应用程序,诸如Argus,Runkeeper,Fitstar Personal Trainer等等,并了解用户真正的需求。然后再加上计步器、卡路里计数器等创新功能,更好的服务目标客户。
营销的新时代
商业智能和大数据让基于知识的移动应用程序变得有径可循,所以一些产品人员就尝试找到电子邮件平台和移动应用程序之间的链接,例如建立营销云电子邮件工作室,敏捷数据信息平台等等。
移动应用程序利用大数据分析的能力对于以专业级别定位用户的公司至关重要,从业务分析到运营智能再到市场营销都能提供价值。
苹果公司采用供应链管理功能来推动其营销优势,苹果公司的移动应用程序开发人员可以花四天时间将任何产品组装到供应链中。虽然并不是所有的公司都像苹果,但是我们也可以基于此做出一些努力:
·通过关联组合当前事件,避免产品受到外部条件的较大影响。
·从各种供应链点提取尽可能多的信息和数据。
·通过应用分析来预测未来
·在丰富的移动界面中提供完整的用户体验地图。
·大数据是未来应用的关键一环
由于大量用户转向平板电脑和智能手机,移动应用市场预计到2020年将超过1000亿美元。因此,开发更好的移动应用显然是数字技术的未来。
与计算机应用程序相比,移动应用程序的波动性更大。简单易操作使其广受用户欢迎。分析大数据是同等获取信息的最有效方式,所以企业在这方面要多多投入。
正如我们刚刚看到的,大数据对于未来移动应用程序的开发非常重要。分析专业人士发现通过新技术来分析大量未排序的数据,会在这其中发现很多有趣的新功能,为用户提供更理想和难忘的体验。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26