京公网安备 11010802034615号
经营许可证编号:京B2-20210330
认为你的公司需要数据科学家?你可能错了
当我在15年前开始从事数据工作时,我从未想过近年来数据科学家会如此备受追捧。如今,数据科学家被认为是全球最热门的职位之一,市场上对数据科学家的需求供不应求。
创业公司在产品生命周期的早期招聘数据科学家的情况并不罕见。其实很多情况下,他们并不需要数据科学家。
作为一名数据科学方面的倡导者,为什么我会这么认为呢?
首先,我想声明的是雇用数据科学家确实有很多好处。如果使用得当,数据科学家将成为强大的商业武器。我想强调的是,数据科学当中涉及到大量的数据相关操作和技巧,这不是在短期培训中就能掌握的。
因此,当企业需要聘请数据科学家时,需要慎重考虑应该何时聘请哪种数据科学家。
当企业打算聘请数据科学家之前,可以先试着问自己以下四个问题:
1. 有多少数据?
如果你是一家尚未启动的创业公司,那么你们可能并不需要全职数据科学家。其实,如果你的公司已经发展的较为成熟,但只有小规模的客户、产品或会员基础,那么你也不需要数据科学家。
为什么呢?显然数据科学家需要数据。不是任何数据都可以。许多技术需要至少数万个、甚至数百万个数据点才能构建。
如今,深度学习备受关注。在针对数据科学家的工作描述中充满了神经网络、计算机视觉和自然语言处理等术语。而这类技术依赖于大量的训练数据。谷歌翻译就是建立在超过1.5亿个词汇基础上的神经网络。成功部署这型模型所需的数据量超过了许多公司加起来的数据总量。
很多技术比深度学习使用更少的数据,但是当中仍然需要相当大的样本,还需要能够判断何时使用哪种方法的知识储备。目前需要大量的投入才能创建数据科学所需要的环境,拥有资金和昂贵的资源是远远不够的。
2. 是否有已制定的关键绩效指标(KPI)和商业智能报表?
如果没有对企业驱动因素的基本了解,那么将难以利用先进技术。
数据科学家能够通过机器学习进行预测,例如哪些用户会流失、哪些用户很活跃。但是如果缺乏对流失和高度活跃的定义,那么在构建预测模型之前会遇到问题。
此外,如果没有足够的指标进行评估,那么将很难验证模型。A/B测试等其他技术需要总体评估标准(OEC),这通常是业务驱动的KPI。
3. 数据科学家要做什么?
这是四个问题中最主观和最有趣的问题,“你想让数据科学家做什么?”我得到的最常见的答案是:“我们不知道,这也是为什么我们需要雇用一位。”
在这种情况下,我会告诉该企业这是行不通的。虽然聘请数据科学家时,你并不需要成为该方面的专家,但是你应该清楚哪些是可行的、哪些是不可行的,从而不会设定不切实际的期望。
数据科学不是魔术,但也不是传统科学。数据科学是一门艺术,也是一门科学,这意味着当中技术和能力的可变性很大。企业可以考虑让现有团队的成员发展成数据科学家。对现有分析师来说,进入数据科学领域的方式之一是对现有的KPI进行预测。一方面,他们有机会学习熟悉的数据; 另一方面,对现有员工进行投资意味着将来市场招聘的需求减少。
4. 数据科学家有哪些内部支持?
如果数据科学家在你的企业没有适当的支持,那么请不要为招募他们而投资。近年来,数据科学课程数量激增,然而许多毕业生并没有准备好解决业务问题。绝大多数课程都让学生解决预先清洁好的数据。在现实世界中,干净的数据并不存在。
在没有高级数据科学家指导的前提下,聘请初级数据科学家并不明智,初级数据科学家会遇到难题,而且往往会导致错误的分析。初级的数据科学家团队难以将业务问题转化为技术问题,而错误的分析会导致任务难以完成。
聘请高级数据科学家并不能完全缓解这个问题,部分原因在于很难证明雇佣人员的水平和资历。如果你很幸运地聘请到优秀的人员,他仍然需要来自领导团队的大量支持。比如,创建从未使用过的模型;或者进行A/B测试但结果被忽略。更糟的是,分析问题所需的数据并没有被收集。
通常,必要的第一步是强大的数据收集程序,这需要由工程师或数据库管理员提供,而不是数据科学家。在很多企业中,高级数据科学家需要花大量时间完成数据需求和团队部署,而这很容易导致高级数据科学家的流失。
结语
招聘和留住优秀的数据科学家的成本是很昂贵的。但如果能明确何时聘用、如何聘用、聘用哪种人才,则能够有效地减少成本。
不要陷入招聘广告的陷阱,那些只是对工作技能的简单罗列。不要奢望数据科学家会魔法。一定要明确自身的真实需求,如果可能的话,在进行招聘之前咨询专业人员。企业数据方面的成功取决于以上这几点。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16