京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python中第三方库Requests库的高级用法详解
虽然Python的标准库中urllib2模块已经包含了平常我们使用的大多数功能,但是它的API使用起来让人实在感觉不好。它已经不适合现在的时代,不适合现代的互联网了。而Requests的诞生让我们有了更好的选择。本文就介绍了Python中第三方库Requests库的高级用法。
一、Requests库的安装
利用 pip 安装,如果你安装了pip包(一款Python包管理工具,不知道可以百度哟),或者集成环境,比如Python(x,y)或者anaconda的话,就可以直接使用pip安装Python的库。
$ pip install requests
安装完成之后,下面来看一下基本的方法:
#get请求方法
>>> r = requests.get('https://api.github.com/user', auth=('user', 'pass'))
#打印get请求的状态码
>>> r.status_code
200
#查看请求的数据类型,可以看到是json格式,utf-8编码
>>> r.headers['content-type']
'application/json; charset=utf8'
>>> r.encoding
'utf-8'
#打印请求到的内容
>>> r.text
u'{"type":"User"...'
#输出json格式数据
>>> r.json()
{u'private_gists': 419, u'total_private_repos': 77, ...}
下面看一个小栗子:
#小例子
import requests
r = requests.get('http://www.baidu.com')
print type(r)
print r.status_code
print r.encoding
print r.text
print r.cookies
'''请求了百度的网址,然后打印出了返回结果的类型,状态码,编码方式,Cookies等内容 输出:'''
200
UTF-8
<requestscookiejar[]>
二、http基本请求
requests库提供了http所有的基本请求方式。例如:
r = requests.post("http://httpbin.org/post")
r = requests.put("http://httpbin.org/put")
r = requests.delete("http://httpbin.org/delete")
r = requests.head("http://httpbin.org/get")
r = requests.options(http://httpbin.org/get)
基本GET请求
r = requests.get("http://httpbin.org/get")
#如果想要加参数,可以利用 params 参数:
import requests
payload = {'key1': 'value1', 'key2': 'value2'}
r = requests.get("http://httpbin.org/get", params=payload)
print r.url
#输出:http://httpbin.org/get?key2=value2&key1=value1
如果想请求JSON文件,可以利用 json() 方法解析,例如自己写一个JSON文件命名为a.json,内容如下:
["foo", "bar", {
"foo": "bar"
}]
#利用如下程序请求并解析:
import requests
r = requests.get("a.json")
print r.text
print r.json()
'''运行结果如下,其中一个是直接输出内容,另外一个方法是利用 json() 方法 解析,感受下它们的不同:'''
["foo", "bar", {
"foo": "bar"
}]
[u'foo', u'bar', {u'foo': u'bar'}]
如果想获取来自服务器的原始套接字响应,可以取得 r.raw 。 不过需要在初始请求中设置 stream=True 。
r = requests.get('https://github.com/timeline.json', stream=True)
r.raw
#输出
<requests.packages.urllib3.response.httpresponse object="" at="" 0x101194810="">
r.raw.read(10)
'\x1f\x8b\x08\x00\x00\x00\x00\x00\x00\x03'
这样就获取了网页原始套接字内容。
如果想添加 headers,可以传 headers 参数:
import requests
payload = {'key1': 'value1', 'key2': 'value2'}
headers = {'content-type': 'application/json'}
r = requests.get("http://httpbin.org/get", params=payload, headers=headers)
print r.url
#通过headers参数可以增加请求头中的headers信息
三、基本POST请求
对于 POST 请求来说,我们一般需要为它增加一些参数。那么最基本的传参方法可以利用 data 这个参数。
import requests
payload = {'key1': 'value1', 'key2': 'value2'}
r = requests.post("http://httpbin.org/post", data=payload)
print r.text
#运行结果如下:
{
"args": {},
"data": "",
"files": {},
"form": {
"key1": "value1",
"key2": "value2"
},
"headers": {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Content-Length": "23",
"Content-Type": "application/x-www-form-urlencoded",
"Host": "http://httpbin.org",
"User-Agent": "python-requests/2.9.1"
},
"json": null,
"url": "http://httpbin.org/post"
}
可以看到参数传成功了,然后服务器返回了我们传的数据。
有时候我们需要传送的信息不是表单形式的,需要我们传JSON格式的数据过去,所以我们可以用 json.dumps() 方法把表单数据序列化。
import json
import requests
url = 'http://httpbin.org/post'
payload = {'some': 'data'}
r = requests.post(url, data=json.dumps(payload))
print r.text
#运行结果:
{
"args": {},
"data": "{\"some\": \"data\"}",
"files": {},
"form": {},
"headers": {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Content-Length": "16",
"Host": "http://httpbin.org",
"User-Agent": "python-requests/2.9.1"
},
"json": {
"some": "data"
},
"url": "http://httpbin.org/post"
}
通过上述方法,我们可以POST JSON格式的数据
如果想要上传文件,那么直接用 file 参数即可:
#新建一个 test.txt 的文件,内容写上 Hello World!
import requests
url = 'http://httpbin.org/post'
files = {'file': open('test.txt', 'rb')}
r = requests.post(url, files=files)
print r.text
{
"args": {},
"data": "",
"files": {
"file": "Hello World!"
},
"form": {},
"headers": {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Content-Length": "156",
"Content-Type": "multipart/form-data; boundary=7d8eb5ff99a04c11bb3e862ce78d7000",
"Host": "http://httpbin.org",
"User-Agent": "python-requests/2.9.1"
},
"json": null,
"url": "http://httpbin.org/post"
}
这样我们便成功完成了一个文件的上传。
requests 是支持流式上传的,这允许你发送大的数据流或文件而无需先把它们读入内存。要使用流式上传,仅需为你的请求体提供一个类文件对象即可,非常方便:
with open('massive-body') as f:
requests.post('http://some.url/streamed', data=f)
四、Cookies
如果一个响应中包含了cookie,那么我们可以利用 cookies 变量来拿到:
import requests
url = 'Example Domain'
r = requests.get(url)
print r.cookies
print r.cookies['example_cookie_name']
以上程序仅是样例,可以用 cookies 变量来得到站点的 cookies
另外可以利用 cookies 变量来向服务器发送 cookies 信息:
import requests
url = 'http://httpbin.org/cookies'
cookies = dict(cookies_are='working')
r = requests.get(url, cookies=cookies)
print r.text
#输出:
'{"cookies": {"cookies_are": "working"}}'
五、超时配置
可以利用 timeout 变量来配置最大请求时间
requests.get(‘Build software better, together', timeout=0.001)
注:timeout 仅对连接过程有效,与响应体的下载无关。
也就是说,这个时间只限制请求的时间。即使返回的 response 包含很大内容,下载需要一定时间。
六、会话对象
在以上的请求中,每次请求其实都相当于发起了一个新的请求。也就是相当于我们每个请求都用了不同的浏览器单独打开的效果。也就是它并不是指的一个会话,即使请求的是同一个网址。比如:
import requests
requests.get('http://httpbin.org/cookies/set/sessioncookie/123456789')
r = requests.get("http://httpbin.org/cookies")
print(r.text)
#结果是:
{
"cookies": {}
}
很明显,这不在一个会话中,无法获取 cookies,那么在一些站点中,我们需要保持一个持久的会话怎么办呢?就像用一个浏览器逛淘宝一样,在不同的选项卡之间跳转,这样其实就是建立了一个长久会话。
解决方案如下:
import requests
s = requests.Session()
s.get('http://httpbin.org/cookies/set/sessioncookie/123456789')
r = s.get("http://httpbin.org/cookies")
print(r.text)
#在这里我们请求了两次,一次是设置 cookies,一次是获得 cookies
{
"cookies": {
"sessioncookie": "123456789"
}
}
发现可以成功获取到 cookies 了,这就是建立一个会话到作用。
那么既然会话是一个全局的变量,那么我们肯定可以用来全局的配置了。
import requests
s = requests.Session()
s.headers.update({'x-test': 'true'})
r = s.get('http://httpbin.org/headers', headers={'x-test2': 'true'})
print r.text
'''通过 s.headers.update 方法设置了 headers 的变量。然后我们又在请求中 设置了一个 headers,那么会出现什么结果?很简单,两个变量都传送过去了。 运行结果:'''
{
"headers": {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Host": "http://httpbin.org",
"User-Agent": "python-requests/2.9.1",
"X-Test": "true",
"X-Test2": "true"
}
}
如果get方法传的headers 同样也是 x-test 呢?
r = s.get('http://httpbin.org/headers', headers={'x-test': 'true'})
#它会覆盖掉全局的配置:
{
"headers": {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Host": "http://httpbin.org",
"User-Agent": "python-requests/2.9.1",
"X-Test": "true"
}
}
如果不想要全局配置中的一个变量了呢?很简单,设置为 None 即可。
r = s.get('http://httpbin.org/headers', headers={'x-test': None})
{
"headers": {
"Accept": "*/*",
"Accept-Encoding": "gzip, deflate",
"Host": "http://httpbin.org",
"User-Agent": "python-requests/2.9.1"
}
}
以上就是 session 会话的基本用法。
七、SSL证书验证
现在随处可见 https 开头的网站,Requests可以为HTTPS请求验证SSL证书,就像web浏览器一样。要想检查某个主机的SSL证书,你可以使用 verify 参数,因为前段时间12306 证书不是无效的嘛,来测试一下:
import requests
r = requests.get('https://kyfw.12306.cn/otn/', verify=True)
print r.text
#结果:
requests.exceptions.SSLError: [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed (_ssl.c:590)
来试下 github 的:
import requests
r = requests.get('Build software better, together', verify=True)
print r.text
嗯,正常请求,由于内容太多,我就不粘贴输出了。
如果我们想跳过刚才 12306 的证书验证,把 verify 设置为 False 即可:
import requests
r = requests.get('https://kyfw.12306.cn/otn/', verify=False)
print r.text
发现就可以正常请求了。在默认情况下 verify 是 True,所以如果需要的话,需要手动设置下这个变量。
八、代理
如果需要使用代理,你可以通过为任意请求方法提供 proxies 参数来配置单个请求。
import requests
proxies = {
"https": "http://41.118.132.69:4433"
}
r = requests.post("http://httpbin.org/post", proxies=proxies)
print r.text
#也可以通过环境变量 HTTP_PROXY 和 HTTPS_PROXY 来配置代理
export HTTP_PROXY="http://10.10.1.10:3128"
export HTTPS_PROXY=http://10.10.1.10:1080
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助requests.packages.urllib3.response.httpresponse>requestscookiejar[]>
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27