
投资理念才是量化投资的重中之重
量化投资是融入了投资者的投资理念,并以数据量化建模为基础,程序化交易为手段完成的一种投资方式。我们在前面的文章中讲过如何建立模型,模型的选择以及如何去判断一个程序化交易系统的有效性。但是通过量化投资的概念我们不难看出,对于量化投资而言真正重要的是它背后的投资理念。那么今天我们就来一起学习一下关于投资理念的内容。
在量化投资利用历史数据为支撑去择股的时候。很多朋友可能已经注意到这样的一种情况,即在很多情况下,我们可以通过数据挖掘找到历史表现业绩优秀投资方法。可以说,找到这种类型的投资方法并不难,难点在于它是否能够应用在未来的市场行情上。那么利用量化投资来进行选股应该注重哪些方面呢?
一、成长股和价值股
其实成长股和价值股这两种选股风格早在上世纪七八十年代时就已经出现了。价值股一般指股价被低估的一种股票。通常情况下,它们拥有比较低的市净率或市盈率,还有比较高的派息率。成长股一般是指,该股票的上市公司有较为广阔的发展前景。公司的盈利有稳步增长,股票价格也在上涨。这时投资者相对来说比较愿意花高价买入该公司的股票,以期在时候的市场行情中获得更高的利益。无论是价值股还是成长股其实都是后期因子投资的前身。在近些年的一些研究中,就有研究者把因子投资法应用在smart beta上。smart beta中的很多重要组成部分,都是由市净率、市盈率和派息率等因素组成的。
这两种选股方式各有各的好处,主要可以根据个人情况进行选择。比如选择价值股就是一个相对务实的表现。因为选择价值股就好像是选择了一间价格实惠品质优良的餐馆,这样的餐馆有谁不想去光顾呢?
二、选择有质量的股票
有的朋友可能听说过市场中的“动量效应”和“逆势效应”。动量效应不难理解,就是当所有人都看好一只股票的时候,一部分小投资者也跟风买入就会出现股票价格涨完再涨的情况。逆势效应主要是投资者反应过度造成的。动量是不能够长期存在的,股票价格一般会出现“短期动量,长期反转”的情况。
还有一个比较关键的地方,就是我们要重点讲的质量。那么有质量的股票一般都具有什么样的特征呢?
一般来说,有质量的股票都具有四个特点即,营运效率高、低杠杆、盈利稳定以及高边际利润。
作为量化投资者,就是要把这些有质量的股票的特点融入投资理念,转化成可以量化的因子。通过这些因子作为条件来进行择股。
三、挑选波动率低的股票
很多投资者偏爱高波动率的股票,因为他们被暴利带来的快感深深的吸引。但是我们要知道那些低波动率的股票往往会由于价格波动小,而实现长期且稳定的收益。我们在做量化投资时,还是建议大家选择波动较小的股票.
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
如何考取数据分析师证书:以 CDA 为例 在数字化浪潮席卷各行各业的当下,数据分析师已然成为企业挖掘数据价值、驱动决策的 ...
2025-07-15CDA 精益业务数据分析:驱动企业高效决策的核心引擎 在数字经济时代,企业面临着前所未有的数据洪流,如何从海量数据中提取有 ...
2025-07-15MySQL 无外键关联表的 JOIN 实战:数据整合的灵活之道 在 MySQL 数据库的日常操作中,我们经常会遇到需要整合多张表数据的场景 ...
2025-07-15Python Pandas:数据科学的瑞士军刀 在数据驱动的时代,面对海量、复杂的数据,如何高效地进行处理、分析和挖掘成为关键。 ...
2025-07-15用 SQL 生成逆向回滚 SQL:数据操作的 “后悔药” 指南 在数据库操作中,误删数据、错改字段或误执行批量更新等问题时有发生。 ...
2025-07-14t检验与Wilcoxon检验的选择:何时用t.test,何时用wilcox.test? t 检验与 Wilcoxon 检验的选择:何时用 t.test,何时用 wilcox. ...
2025-07-14AI 浪潮下的生存与进阶: CDA数据分析师—开启新时代职业生涯的钥匙(深度研究报告、发展指导白皮书) 发布机构:CDA数据科 ...
2025-07-13LSTM 模型输入长度选择技巧:提升序列建模效能的关键 在循环神经网络(RNN)家族中,长短期记忆网络(LSTM)凭借其解决长序列 ...
2025-07-11CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-11数据透视表中两列相乘合计的实用指南 在数据分析的日常工作中,数据透视表凭借其强大的数据汇总和分析功能,成为了 Excel 用户 ...
2025-07-11尊敬的考生: 您好! 我们诚挚通知您,CDA Level I和 Level II考试大纲将于 2025年7月25日 实施重大更新。 此次更新旨在确保认 ...
2025-07-10BI 大数据分析师:连接数据与业务的价值转化者 在大数据与商业智能(Business Intelligence,简称 BI)深度融合的时代,BI ...
2025-07-10SQL 在预测分析中的应用:从数据查询到趋势预判 在数据驱动决策的时代,预测分析作为挖掘数据潜在价值的核心手段,正被广泛 ...
2025-07-10数据查询结束后:分析师的收尾工作与价值深化 在数据分析的全流程中,“query end”(查询结束)并非工作的终点,而是将数 ...
2025-07-10CDA 数据分析师考试:从报考到取证的全攻略 在数字经济蓬勃发展的今天,数据分析师已成为各行业争抢的核心人才,而 CDA(Certi ...
2025-07-09【CDA干货】单样本趋势性检验:捕捉数据背后的时间轨迹 在数据分析的版图中,单样本趋势性检验如同一位耐心的侦探,专注于从单 ...
2025-07-09year_month数据类型:时间维度的精准切片 在数据的世界里,时间是最不可或缺的维度之一,而year_month数据类型就像一把精准 ...
2025-07-09CDA 备考干货:Python 在数据分析中的核心应用与实战技巧 在 CDA 数据分析师认证考试中,Python 作为数据处理与分析的核心 ...
2025-07-08SPSS 中的 Mann-Kendall 检验:数据趋势与突变分析的有力工具 在数据分析的广袤领域中,准确捕捉数据的趋势变化以及识别 ...
2025-07-08备战 CDA 数据分析师考试:需要多久?如何规划? CDA(Certified Data Analyst)数据分析师认证作为国内权威的数据分析能力认证 ...
2025-07-08