京公网安备 11010802034615号
经营许可证编号:京B2-20210330
量化投资是什么意思?如何理解量化投资
在接触私募基金策略的时候,我们经常会发现一些概念,例如量化对冲,量化多因子、量化择时等这些概念,它们都围绕着量化展开,那么什么叫量化投资呢?今天,就给诸位介绍量化投资。
如何理解量化投资的概念?
量化投资就是利用计算机技术并且采用一定的数学模型去实践投资理念,实现投资策略的过程。量化投资——恪尽职守,理性化投资践行者。量化投资,简单来讲就是通过对历史数据的分析,预测未来股市的涨跌。
根据上面的定义,理解它的话,咱们只要记住3个关键词:
数学模型:需要数学公式或模型进行计算;
计算机技术:用计算机来进行自动化交易;
投资策略:将这种方法形成一种惯用投资策略。
我们都知道,每个人都是相对理性的,投资很容易受到情绪的影响而产生偏差。而由机器人操盘的量化投资,其最大的优势在于:在某些方面可以做到绝对理性化,比如止盈或止损。因为它能克服人性的优柔寡断与贪婪。
量化投资在国外的发展历史
诚然,量化投资在国内还是这几年才兴起的新鲜事,但在国外的发展已经有超过50年的历史。
1969年,爱德华·索普利用他发明的"科学股票市场系统"(实际上是一种股票权证定价模型),成立了第一个量化投资基金。该基金名为普林斯顿-纽波特合伙基金,主要从事可转换债券的套利。令人惊奇的是,该基金成立后连续11年内没有出现年度亏损且持续跑赢标普指数。量化投资成功地吸引了人们的注意!
提起量化投资,就不得不提量化投资的标杆——华尔街传奇人物詹姆斯·西蒙斯(James Simons)。通过将数学理论巧妙融合到投资的实战之中,西蒙斯成为了投资界中首屈一指的“模型先生”。由其运作的大奖章基金(Medallion)在1989-2009的二十年间,平均年收益率为35%,若算上44%的收益提成,则该基金实际的年化收益率可高达60%,比同期标普500指数年均回报率高出20多个百分点,即使相较金融大鳄索罗斯和股神巴菲特的操盘表现,也要遥遥领先十几个百分点。最为难能可贵的是,纵然是在次贷危机全面爆发的2008年,该基金的投资回报率仍可稳稳保持在80%左右的惊人水准。西蒙斯通过将数学模型和投资策略相结合,逐步走上神坛,开创了由他扛旗的量化时代。
经过近半个世纪的发展,截至2016年底,全球量化投资基金总规模已突破3万亿美元,是全球基金规模的比例的30%左右。
而在国内,2010年可以说是中国量化投资元年,沪深300股指期货的推出、ETF及分级基金的迅速发展使得各类量化策略有了用武之地。与此同时,公募、私募基金也都发行了大量的量化策略基金。尤其是私募基金,在投资决策上没有那么多的限制,甚至有很多私募公司专门做量化投资,量化投资已经成为一个非常热门的投资策略。
好,以上就是关于量化投资概念以及量化投资发展史的介绍。下面来给大家总结下量化投资的概念。量化投资,是用数学公式或模型进行计算,用计算机来进行自动化交易而形成的一种投资策略,也叫量化策略。量化对冲、量化多因子和量化择时都是属于量化投资策略
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15在CDA(Certified Data Analyst)数据分析师的日常工作中,“高维数据处理”是高频痛点——比如用户画像包含“浏览次数、停留时 ...
2026-01-15在教育测量与评价领域,百分制考试成绩的分布规律是评估教学效果、优化命题设计的核心依据,而正态分布则是其中最具代表性的分布 ...
2026-01-15在用户从“接触产品”到“完成核心目标”的全链路中,流失是必然存在的——电商用户可能“浏览商品却未下单”,APP新用户可能“ ...
2026-01-14在产品增长的核心指标体系中,次日留存率是当之无愧的“入门级关键指标”——它直接反映用户对产品的首次体验反馈,是判断产品是 ...
2026-01-14在CDA(Certified Data Analyst)数据分析师的业务实操中,“分类预测”是高频核心需求——比如“预测用户是否会购买商品”“判 ...
2026-01-14在数字化时代,用户的每一次操作——无论是电商平台的“浏览-加购-下单”、APP的“登录-点击-留存”,还是金融产品的“注册-实名 ...
2026-01-13在数据驱动决策的时代,“数据质量决定分析价值”已成为行业共识。数据库、日志系统、第三方平台等渠道采集的原始数据,往往存在 ...
2026-01-13在CDA(Certified Data Analyst)数据分析师的核心能力体系中,“通过数据建立模型、实现预测与归因”是进阶关键——比如“预测 ...
2026-01-13在企业数字化转型过程中,业务模型与数据模型是两大核心支撑体系:业务模型承载“业务应该如何运转”的逻辑,数据模型解决“数据 ...
2026-01-12当前手游市场进入存量竞争时代,“拉新难、留存更难”成为行业普遍痛点。对于手游产品而言,用户留存率不仅直接决定产品的生命周 ...
2026-01-12在CDA(Certified Data Analyst)数据分析师的日常工作中,“挖掘变量间的关联关系”是高频核心需求——比如判断“用户停留时长 ...
2026-01-12在存量竞争时代,用户流失率直接影响企业的营收与市场竞争力。无论是电商、互联网服务还是金融行业,提前精准预测潜在流失用户, ...
2026-01-09在量化投资领域,多因子选股是主流的选股策略之一——其核心逻辑是通过挖掘影响股票未来收益的各类因子(如估值、成长、盈利、流 ...
2026-01-09在CDA(Certified Data Analyst)数据分析师的工作场景中,分类型变量的关联分析是高频需求——例如“用户性别与商品偏好是否相 ...
2026-01-09数据库中的历史数据,是企业运营过程中沉淀的核心资产——包含用户行为轨迹、业务交易记录、产品迭代日志、市场活动效果等多维度 ...
2026-01-08在电商行业竞争日趋激烈的当下,数据已成为驱动业务增长的核心引擎。电商公司的数据分析师,不仅是数据的“解读官”,更是业务的 ...
2026-01-08