
R语言提供了另外一个能够处理人工神经网络的算法包nnet,该算法提供了传统的前馈反向传播神经网络算法的实现。
操作
安装包与数据分类:
library(nnet)
data("iris")
set.seed(2)
ind = sample(2,nrow(iris),replace = TRUE,prob = c(0.7,0.3))
trainset = iris[ind == 1,]
testset = iris[ind == 2,]
使用nnet包训练神经网络:
iris.nn = nnet(Species ~ .,data = trainset,size = 2,rang = 0.1,decay = 5e-4,maxit = 200)
# weights: 19
initial value 114.539765
iter 10 value 52.100312
iter 20 value 50.231442
iter 30 value 49.526599
iter 40 value 49.402229
iter 50 value 44.680338
iter 60 value 5.254389
iter 70 value 2.836695
iter 80 value 2.744315
iter 90 value 2.687069
iter 100 value 2.621556
iter 110 value 2.589096
iter 120 value 2.410539
iter 130 value 2.096461
iter 140 value 1.938717
iter 150 value 1.857105
iter 160 value 1.825393
iter 170 value 1.817409
iter 180 value 1.815591
iter 190 value 1.815030
iter 200 value 1.814746
final value 1.814746
stoppedafter 200 iterations
调用summary( )输出训练好的神经网络:
summary(iris.nn)
a 4-2-3 network with 19 weights
options were - softmax modelling decay=5e-04
b->h1 i1->h1 i2->h1 i3->h1 i4->h1
-20.60 0.31 -3.84 3.36 7.72
b->h2 i1->h2 i2->h2 i3->h2 i4->h2
-7.15 1.50 2.49 -4.14 5.59
b->o1 h1->o1 h2->o1
-7.28 -3.67 13.16
b->o2 h1->o2 h2->o2
15.90 -16.64 -19.40
b->o3 h1->o3 h2->o3
-8.62 20.31 6.24
在应用函数时可以实现分类观测,数据源,隐蔽单元个数(size参数),初始随机数权值(rang参数),权值衰减参数(decay参数),最大迭代次数(maxit),整个过程会一直重复直至拟合准则值与衰减项收敛。
使用模型iris.nn模型完成对测试数据集的预测
iris.predict = predict(iris.nn,testset,type = "class")
nn.table = table(testset$Species,iris.predict)
nn.table
iris.predict
setosa versicolor virginica
setosa 17 0 0
versicolor 0 13 1
virginica 0 2 13
基于分类表得到混淆矩阵
confusionMatrix(nn.table)
Confusion Matrix and Statistics
iris.predict
setosa versicolor virginica
setosa 17 0 0
versicolor 0 13 1
virginica 0 2 13
Overall Statistics
Accuracy : 0.9348
95% CI : (0.821, 0.9863)
No Information Rate : 0.3696
P-Value [Acc > NIR] : 1.019e-15
Kappa : 0.9019
Mcnemar's Test P-Value : NA
Statistics by Class:
Class: setosa Class: versicolor Class: virginica
Sensitivity 1.0000 0.8667 0.9286
Specificity 1.0000 0.9677 0.9375
Pos Pred Value 1.0000 0.9286 0.8667
Neg Pred Value 1.0000 0.9375 0.9677
Prevalence 0.3696 0.3261 0.3043
Detection Rate 0.3696 0.2826 0.2826
Detection Prevalence 0.3696 0.3043 0.3261
Balanced Accuracy 1.0000 0.9172 0.9330
在调用predict函数时,我们明确了type参数为class,因此输出的是预测的类标号而非概率矩阵。接下来调用table函数根据预测结果和testset的实际类标号生成分类表,最后利用建立的分类表使用table函数根据caret中的confusionMatrix方法对训练好的神经网络预测性能评估。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08CDA 数据分析师:解锁数据价值的专业力量 在当今这个数据爆炸的时代,数据已成为像石油一样珍贵的战略资源。而 CDA 数据分析师, ...
2025-08-08人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-08-07SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-08-07SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-08-07CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-08-07大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-08-07K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-08-07CDA 数据分析师考试全解析 在当今数字化时代,数据已成为企业发展的核心驱动力,数据分析师这一职业也愈发受到重视。CDA 数据分 ...
2025-08-07大数据时代的隐患:繁荣背后的隐忧 当我们在电商平台浏览商品时,系统总能 “精准” 推送心仪的物品;当我们刷短视频时,算法 ...
2025-08-07解析 F 边界检验:协整分析中的实用工具 在计量经济学的时间序列分析中,判断变量之间是否存在长期稳定的均衡关系(即协整关系) ...
2025-08-07CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-07通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-07评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-07CDA 数据分析师行业标准:构建数据人才的能力坐标系 在数据驱动决策成为企业核心竞争力的时代,CDA(数据分析师)行业标准作为 ...
2025-08-07反向传播神经网络:突破传统算法瓶颈的革命性力量 在人工智能发展的历史长河中,传统算法曾长期主导着数据处理与模式识别领域 ...
2025-08-07MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-07抖音数据分析师:驱动平台增长的幕后推手 在抖音这个日活用户数以亿计的超级平台上,每一次用户的滑动、点赞、评论,每一条 ...
2025-08-07基于 SPSS 的中介效应分析结果解读:揭示变量间的隐性关联 在社会科学与自然科学研究中,变量之间的关系往往并非简单的直接作用 ...
2025-08-07