
颠覆主观对冲基金的量化工程师、AI专家和数据科学家
量化和数据分析师可能还在与主观对冲基金经理争夺主导权, 但是私下里也许传统的对冲基金经理已经知道他们时日无多了。
Leig Drogen以前是一家对冲基金的CIO,现在运营着大数据金融技术公司Estimize,他说:“曾经有管理十亿美元以上的投资经理告诉我,他们正在夜校学习数据科学课程。这些课程甚至与财务没有关系,因为他们还不存在”。
摩根士丹利(Morgan Stanley)股票资本市场银行家Emmett Kilduff补充道:“大多数自由基金经理认为Python是一条大蛇。他们从来没有听说过网络抓取或其他大数据技术。他们完全没有这样的技能能力“。
对于量化分析师和数据科学家来说,主观基金管理像是一个“宗教”:以直觉和信念为基础进行预测。但在绝大多数对冲基金和资产管理公司,他们仍然是这样操作的。
“大多数对冲基金有一个集中化的团队,专注与寻找数据,清理和纳入。然后他们雇用数据科学家和量化研究人员寻找alpha的机会,然后简单的完成一个Excel电子表格交给不知道该怎么做的投资组合经理“,Drogen在新闻周刊人工智能资本市场会议上说。
Drogen的理论是,投资组合经理,数据科学家和量化分析师应该都在“池子”中一起工作。投资组合经理了解交易策略,可以解释他对股票的理解,以及他对alpha的看法给向量化分析员和数据科学家 ,然后由他们挖掘和获取数据。这样一个工作体系给投资经理非常大的优势。
大多数基金经理还没有意识到这一点。尤其是大公司, 在这么多不同的团队中试图引入如此多的稀缺数据科学人才现在几乎是不可能的。
“现在的方式是成立一个支持传统专业知识的集中量化团队”, Kilduff说。
将基本面的知识和巨量数据集的量化融合的想法-quantamental方法 ,现在越来越引人关注。即便如此,这个方法不是简单地获取这些巨大的数据来源,而是应该如何使用这些数据并了解后面潜在的金融驱动因素。
聚焦大数据对冲基金的迈克尔·比尔说:“量化与基本面争论的真正原因是,没有人知道如何使用数据科学来获得洞察力,并将洞察力转化为行动。如何把量化和基本面的洞察力合并成一个闭环, 并把它变成钱, 这才是最难的部分。”
”尽管有大量的不同意见,许多主观对冲基金的投资组合经理知道,背景已经改变,他们正在采取行动更新他们的技能“,Drogen说, “不少有几十年经验的投资经理去参加Python和R的课程,或学习如何建立一个多因子模型”。
在对冲基金向大数据和人工智能的转变中, 也遇到现在的工作人员的阻碍。大数据公司Orbital Insight全球销售主管AJ DeRosa说:“对基本面的膜拜有很久的时间了, 而这些传统的投资人员有很强的自尊心, 所以让他们转变, 你需要同情心。但在五年的时间里,他们的工作要么成为量化分析师,要么就不再存在了”。
主观对冲基金的想法:雇用了一大批数据科学家和博士,然后把他们放在后面的仓库里去自生自灭的创造奇迹。这样的想法需要改变。 文化的转变可能需要时间慢慢来,但一旦发生了, 产生的新的基金经理可能远超他们。
比尔说:“大约有70家对冲基金表示他们使用大数据,其中大约20家真正在做,也许有少数家真正做的很棒。“
其中之一是Numerai,这是一家由29岁的南非理查德· 克拉布(Richard Craib)经营的硅谷对冲基金。它使用成千上万的自由数据科学家创建机器学习模型,然后用于进行交易。有大约13,000人互相竞争创造最好的战略 - 奖金为价值约15万美元的比特币。
“我们的一个投资者Renaissance Technologies的联合创始人霍华德·摩根(Howard Morgan)过去几年就停止了投资在量化基金上。他的逻辑是你无法与有120个博士使用各种无法想象的模型来分析数据集的Two Sigma竞争。但是我们有七八个员工和13000多名分布在世界各地的数据科学家一起建立对冲基金。我们正处于第三波,正在创造一种新型的对冲基金”。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08