
大数据+智能分析=?
一直以来,视频监控在各领域扮演着不容置疑的重要角色。作为我国支柱产业之一且安全事故易发的建筑行业,视频监控已经是每个建设项目的标准设施。随着视频监控高清化,智能化的技术普及,项目中所使用的视频监控系统应用技术也在不断创新。自然产生了海量的视频和图像数据,进而对传统的后端存储和智能分析带来一系列的考验。对采用智能化技术建设的设施的要求也越来越高。
传统的视频监控系统通常是通过人员监控和录像来实现安全防护,实际上并不能主动有效的保障安全。由于显示屏数量有限,对安全隐患无法实时监控和预警。监控点过多,人员监控根本无法顾及所有监控场景。监控人员的注意力也难保证24小时都能准确高效的监控所有场景。
后期的视频录像分析也需要大量的人力物力。举个例子:震惊中外的“8?10重庆枪击抢劫案”。当地公安部门为了在视频监控录像中找到犯罪嫌疑人周克华,动用了约2000警力每天进行长达十几个小时回放录像视频搜寻。总视频浏览量相当于83万部电影,耗费了大量的人力物力。同样在建筑行业,人工回放查看监控录像是一件效率十分低下的事情。
目前大数据应用已开始在建筑行业落地实施。视频监控从前端视频技术到中端海量存储到后端的大数据分析,是一个完整的大数据技术应用,目前能提出整体解决方案的服务商,屈指可数。
为了解决视频数据海量存储和后期分析复杂等问题,让视频监控技术更好地服务于建筑行业,基于此,某全国智慧工地大数据云服务平台是面向视频监控大数据应用的技术从前端的智能采集,到中间的海量存储,到后端的浓缩分析,形成了很好的闭环。
所有搭载了全国智慧工地大数据云服务平台的建设项目,前端视频监控点位全部采用200万高清网络摄像机,通过因地制宜的设备选型实现对工地全高清网络视频监控的覆盖。通过将场景中背景和前景目标分离、进而探测、提取、跟踪在场景内出现的目标并进行行为识别,遇到可疑视像,会及时记录。实现“事前及时记录”、“事中即时报 警”以及“事后快速取证”,使所有监控场景的监控简单而高效。监控人员的工作强度和工作压力大为降低,而不需要每时每刻都关注所有场景的所有细节。后端则采用云存储系统,支持海量视频存储也能保障视频存储的安全性、稳定性。集中存储的管理方式也为后期监控设备的扩容提供了保障。
在对海量的高清视频图像进行智能分析时,对后端服务器的硬件配置、处理性能要求非常高,因此用户的使用成本会大大增加。而且长时间的分析查看,对于管理人员来说,是一件耗时又耗精力的事情。全国智慧工地大数据云服务平台搭载的前端视频智能监控设备实现了后端智能分析部分功能前移至摄像机前端。对视频进行浓缩摘要、检索处理。原本5分钟的监控视频,通过智能提取,进行浓缩分析, 可以实现视频缩短至20秒。既节约了存储空间,也让管理者有了更好的用户体验,为企业节约了大量成本。
全国智慧工地大数据云服务平台视频监控系统利用智能视频分析技术进行前端采集、分析、识别、提供有效数据到后端,云平台以云的方式对视频数据进行存储、二次深度分析、预测判断结果,从而为建筑行业视频监控提供了从前端、平台到后端的闭环应用。全国智慧工地大数据云服务平台对施工现场的智能分析的水平已经相当的高,已经实现对物品的识别和分离、对人脸的识别、对颜色文字数字的识别、对物体变化的分析甚至还有可疑行为的监测。
全国智慧工地大数据云服务平台实现了大数据技术和视频监控的结合,把孤立的视频内容通过大数据技术的加工,形成可视化结果呈现,这种转变可为视频监控业务创造更加智能高效的使用方式,让用户从繁重的观看视频监控劳动中解脱出来,能轻松自如地通过视频监控进行高效准确的决策。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15