
发挥大数据价值的三种途径_数据分析师
关于大数据工作的开展是技术驱动还是业务需求驱动的争论一直都有,其实现在看来这种争论没有太大意义。
如果非要说点什么,可以这样看:对于已经有明确商业价值模式的领域,技术驱动的成分更浓,比如搜索、互联网广告、推荐系统等;而对于商业价值模式模糊,甚至根本没有意识到有商业价值点的场景,业务需求驱动的模式就更有用武之地。
而且,有一点是可以达成共识的,你的大数据只是静静的躺在Hadoop集群里,而没有在某个领域(或场景、流程、产品)中发挥价值,是没有任何意义的,只是让地球更加不低碳而已。
说到如何让大数据变现, Precog的联合创始人John De提到了两块:数据驱动的流程(data-driven processes)和数据驱动的产品(data-driven products)。
类似的思想以前也提到过,如果再说详细点,我认为发挥大数据价值的途径可以有三类:
1)通过数据驱动流程的精细化、智能化
大数据对企业流程的优化已经可以渗透到几乎各个环节,诸如营销流程、会员管理流程、产品管理流程、人力资源优化等等都可以看到他们的身影。
你可以预测未来的销量,已更好的分配资源;你可以为商品找到潜在的喜好用户,以开展主动营销活动;你也可以细分既有用户的各种行为模式,以为产品的优化提供参考;你还可以看看什么员工更稳定、哪些员工会离职……
这些管理、运营流程的改进主要集中为两个词:效率、效果,驱动的源头便是在这个两个词的环节上出现了越来越严重的问题。
在这个环节中,数据挖掘应用建模者的需求会高一些。
2)打造数据驱动的数据产品
当你要改造外部公司的流程时,或者自己内部频繁出现的某类流程优化过程,往往需要将大数据的价值整合起来,通过一款数据产品表现出去。比如,淘宝为卖家提供量子恒道产品,帮助卖家更好的经营自己的店铺;比如电商网站内部频繁出现的交叉销售需求,可以给予用户的行为数据打造个性化推荐系统。
根据各方参与度和界限的不同,数据产品可以有很多模式,最简单的,直接出售自己的数据;或者在自己数据的基础上“深加工”再出售;也可以购买多家的数据,自己整合后提供更优质的某种服务,提供诸如定向广告、广告效果监测等;或者不提供数据服务,只提供计算能力,比如类似百分点的推荐引擎;也可以众包模式采集数据,汇集后形成数据交易市场;
这一类别中,成熟的产品类型是搜索、推荐、计算广告,这三个方向更需要大数据技术专家,同时具备一定的商业观、产品观的人才;而此外,还有一些相对不成熟的或短期内没有形成强技术壁垒模式的产品类型,比如上面说的量子恒道、比如大量的第三方微博营销平台,不是说这些产品不需要高深的技术,而且在当前阶段,更需要的是满足客户的“温饱需求”,未来逐渐加重技术驱动的比重。
3)打造数据驱动的服务产品
之所以把这一类单独提出,主要是这类产品的用户往往是C端,他们大都不会去考虑企业经营、流程层面的问题,而更关注产品的功能及体验。而这类产品和普通的互联网产品的区别在于是否是大数据技术密集型产品,还是人力密集型的产品。
举个例子,要打造一款餐饮服务产品,用传统的“扫街”或积累用户评价的模式就显得人力密集一点;而如果基于用户在特定网站的浏览轨迹进行内容挖掘,进而得到用户的餐饮相关标签(口味、位置、消费力),基于此推出餐饮服务产品则更像我们说的数据驱动的服务产品。
再比如传统门户模式 vs 个性化阅读模式也是类似;包括第二类中的个性化推荐模式,从用户侧看也可以视为数据驱动的服务产品。或许,未来的所有服务产品都会是大数据驱动的,但目前来看还有很长的路要走。本文来自:CDA数据分析师官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29