
深入理解python中函数传递参数是值传递还是引用传递
目前网络上大部分博客的结论都是这样的:
Python不允许程序员选择采用传值还是传 引用。Python参数传递采用的肯定是“传对象引用”的方式。实际上,这种方式相当于传值和传引用的一种综合。如果函数收到的是一个可变对象(比如字典 或者列表)的引用,就能修改对象的原始值——相当于通过“传引用”来传递对象。如果函数收到的是一个不可变对象(比如数字、字符或者元组)的引用,就不能 直接修改原始对象——相当于通过“传值”来传递对象。
你可以在很多讨论该问题的博客里找到以上这一段话。
但是在实际操作中我却发现一个问题:
l=[1,2,3]
def a(x):
x=x+[4]
a(l)
print(l)
这段代码的输出为:
[1,2,3]
为什么是这样呢,list是可变对象,按照上面的结论来说传递方式是引用传递,我应该在函数里能对它进行修改呀?难道不应该输出[1,2,3,4]吗?
我觉得我上面引用的那段大多数博主的结论,其实非常不好理解,而且没有讲到本质,看的云里雾里的。
经过我后面的多次试验,得到以下结论:
其实在python中讨论值传递还是引用传递是没有意义的,要真正对这些情况作出解释,其实是应该搞明白python(对可变对象和不可变对象的)赋值过程中是如何分配内存地址的。
接下来,我们不讨论值传递和引用传递的问题。
让我们做一个非常简单的小实验,其中,id()可以查看变量在内存中的地址:
l1=[1,2,3]
l2=[1,2,3]
a=1
b=1
print(id(l1))
print(id(l2))
print(id(a))
print(id(b))
在我的电脑中的运行结果:
12856594504
12856915080
1643643344
1643643344
可以发现,对于可变对象list来说,即便列表内容一模一样,python也会给它们分配新的不同的地址。
然而,对于不可变对象int来说,内存里只有一个1。即便再定义一个变量c=1,也是指向内存中同一个1。换句话说,不可变对象1的地址是共享的。
接下来让我们看看在函数中调用可变对象和不可变对象,并修改他们的值,会是一个什么情况。
对于不可变对象int,我们来看看最简单的情况:
a=1
print(id(a))
def x(a):
print(id(a))
b=a
print(id(b))
x(a)
运行得到:
1643643344
1643643344
1643643344
这看起来就是一个引用传递,函数外的a、函数里的a和b都指向了同一个地址。
但我们再来看一个极端情况:
a=1
print(id(a))
def x():
b=1
print(id(b))
x()
运行得到:
1643643344
1643643344
很神奇不是吗?函数外定义的a和函数内定义的b没有任何关系,但它们指向同一个地址!
所以你说如何判断它是值传递还是引用传递?讨论这个问题根本没有意义,因为内存里只有一个1。当我把值1传递给函数里的某一个变量的时候,我实际上也传递了地址,因为内存里只有一个1。
甚至于说我直接给函数里的b赋值1都可以让函数外的a和函数内的b指向同一个地址。
下面来看看传递可变对象list的情况:
l=[1,2,3]
print(id(l))
def a(x):
print(id(x))
x.pop()
print(x)
print(id(x))
x=x+[3]
print(x)
print(id(x))
a(l)
运行得到
883142451528
[1, 2]
[1, 2, 3]
可以看到,当我们把函数外的列表L传递给函数后,x的地址和L是一样的,这看起来就是一个引用传递,没问题。
继续往下,我们调用x本身的方法pop后,x变成[1,2],并且x的地址没变,这也没什么问题。
但是当我们给x赋值以后,x的地址就变了。
也就是说,只要创建一个新的可变对象,python就会分配一个新的地址。就算我们创建的新可变对象和已存在的旧可变对象完全一样,python依旧会分配一个新的地址(见本文上半部分那个‘非常简单的小实验')
而pop并不是创建新的可变对象,pop是对已有的可变对象进行修改。
所以可以总结为:
在python中,不可变对象是共享的,创建可变对象永远是分配新地址
这个时候我们再回过头来思考值传递和引用传递的问题,就会发现在python里讨论这个确实是没有意义。
我们可以说:python有着自己的一套特殊的传参方式,这是由python动态语言的性质所决定的
总结
以上就是本文关于深入理解python中函数传递参数是值传递还是引用传递的全部内容,希望对大家有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29