京公网安备 11010802034615号
经营许可证编号:京B2-20210330
详解Python中映射类型的内建函数和工厂函数
1.基本函数介绍
(1)标准类型函数[type()、str()和 cmp()]
对一个字典调用type()工厂方法,会返回字典类型:“
字典是通过这样的算法来比较的:首先是字典的大小,然后是键,最后是值。可是用cmp()做字典的比较一般不是很有用。

算法按照以下的顺序:
首先比较字典长度
如果字典的长度不同,那么用cmp(dict1, dict2)比较大小时,如果字典dict1比dict2长,cmp()返回正值,如果dict2比dict1长,则返回负值。也就是说字典中的键的个数越多,这个字典就越大,即:len(dict1) > len(dict2) ==> dict1 > dict2。
其次比较字典的键
如果两个字典的长度相同,那就按字典的键比较。键比较的顺序和keys()方法返回键的顺序相同。(注意: 相同的键会映射到哈希表的同一位置,这保证了对字典键的检查的一致性)。这时,如果两个字典的键不匹配时,对这两个(不匹配的键)直接进行比较。当dict1中第一个不同的键大于dict2中第一个不同的键,cmp()会返回正值。
然后比较字典的值
如果两个字典的长度相同而且它们的键也完全匹配,则用字典中每个相同的键所对应的值进行比较。一旦出现不匹配的值,就对
这两个值进行直接比较。若dict1比dict2中相同的键所对应的值大,cmp()会返回正值。
完全匹配
到此为止,即每个字典有相同的长度、相同的键、每个键也对应相同的值,则字典完全匹配,返回 0 值。
(2)映射类型相关的函数
dict()
工厂函数被用来创建字典,如果不提供参数会生成空字典。当容器类型对象做为一个参数传递给方法 dict(),如果参数是可以迭代的,即一个序列或是一个迭代器或是一个支持迭代的对象,那每个可迭代的元素必须成对出现。在每个值对中,第一个元素是字典的键、第二个元素是字典中的值。
>>> dict(zip(('x', 'y'), (1, 2)))
{'y': 2, 'x': 1}
>>> dict([['x', 1], ['y', 2]])
{'y': 2, 'x': 1}
>>> dict([('xy'[i-1], i) for i in range(1,3)])
{'y': 2, 'x': 1}
如果输入参数是(另)一个映射对象,比如一个字典对象,对其调用dict()会从存在的字典里复制内容来生成新的字典。新生成的字典是原来字典对象的浅复制版本,它与用字典的内建方法copy()生成的字典对象是一样的。但是从已存在的字典生成新的字典速度比用copy()方法慢,推荐使用copy()。
len()
内建函数len()很灵活,它可用在序列、映射类型和集合上。对字典调用 len(),它会返回所有元素(键-值对)的数目。
hash()
内建函数hash()本身并不是为字典设计的方法,但它可以判断某个对象是否可以做一个字典的键。将一个对象作为参数传递给 hash(),会返回这个对象的哈希值。 只有这个对象是可哈希的,才可作为字典的键 (函数的返回值是整数,不产生错误或异常)。如果用比较操作符来比较两个数值,发现它们是相等的,那么即使二者的数据类型不同, 它们也会得到相同的哈希值。如果非可哈希类型作为参数传递给hash()方法,会产生TypeError错误,因此如果使用这样的对象作为键给字典赋值时会出错。
2.映射类型的内建函数和工厂函数使用实例
标准类型函数[type(),str()和cmp()]
字典比较算法
>>> dict1 = {}
>>> dict2 = {'host':'earth','port':80}
>>> cmp(dict1,dict2)
-1
>>> dict1['host'] = 'earth'
>>> cmp(dict1,dict2)
-1
>>> dict1['port'] = 80
>>> cmp(dict1,dict2)
0
>>> dict1['port'] = 'tcp'
>>> cmp(dict1,dict2)
1
>>> dict2['port'] = 'udp'
>>> cmp(dict1,dict2)
-1
>>> cdict = {'fruits':1}
>>> ddict = {'fruits':1}
>>> cmp(cdict,ddict)
0
>>> cdict['oranges'] = 0
>>> cdict['apples'] = 0
>>> cmp(cdict,ddict)
1
映射类型相关的函数
dict()
>>> dict(zip(('x','y'),(1,2)))
{'y': 2, 'x': 1}
>>> dict([['x',1],['y',2]])
{'y': 2, 'x': 1}
>>> dict([('xy'[i-1],i) for i in range(1,3)])
{'y': 2, 'x': 1}
>>> dict(x=1,y=2)
{'y': 2, 'x': 1}
>>> dict8 = dict(x=1,y=2)
>>> dict8
{'y': 2, 'x': 1}
>>> dict9 = dict(**dict8)
>>> dict9
{'y': 2, 'x': 1}
>>> dict9 = dict8.copy()
>>> dict9
{'y': 2, 'x': 1}
len()
>>> dict2 = {'name':'earth','port':80}
>>> dict2
{'name': 'earth', 'port': 80}
>>> len(dict2)
2
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27