
Python学习小技巧之列表项的排序
本文介绍的是关于Python列表项排序的相关内容,分享出来供大家参考学习,下面来看看详细的介绍:
典型代码1:
data_list = [6, 9, 1, 3, 0, 10, 100, -100]
data_list.sort()
print(data_list)
输出1:
[-100, 0, 1, 3, 6, 9, 10, 100]
典型代码2:
data_list = [6, 9, 1, 3, 0, 10, 100, -100]
data_list_copy = sorted(data_list)
print(data_list)
print(data_list_copy)
输出2:
[6, 9, 1, 3, 0, 10, 100, -100]
[-100, 0, 1, 3, 6, 9, 10, 100]
应用场景
需要对列表中的项进行排序时使用。其中典型代码1是使用的列表自身的一个排序方法sort,这个方法自动按照升序排序,并且是原地排序,被排序的列表本身会被修改;典型代码2是调用的内置函数sort,会产生一个新的经过排序后的列表对象,原列表不受影响。这两种方式接受的参数几乎是一样的,他们都接受一个key参数,这个参数用来指定用对象的哪一部分为排序的依据:
data_list = [(0, 100), (77, 34), (55, 97)]
data_list.sort(key=lambda x: x[1]) # 我们想要基于列表项的第二个数进行排序
print(data_list)
>>> [(77, 34), (55, 97), (0, 100)]
另外一个经常使用的参数是reverse,用来指定是否按照倒序排序,默认为False:
data_list = [(0, 100), (77, 34), (55, 97)]
data_list.sort(key=lambda x: x[1], reverse=True) # 我们想要基于列表项的第二个数进行排序,并倒序
print(data_list)
>>> [(0, 100), (55, 97), (77, 34)]
带来的好处
1. 内置的排序方法,执行效率高,表达能力强,使代码更加紧凑,已读
2. 灵活的参数,用于指定排序的基准,比在类似于Java的语言中需要写一个comparator要方便很多
其它说明
1. sorted内置函数比列表的sort方法要适用范围更广泛,它可以对除列表之外的可迭代数据结构进行排序;
2. list内置的sort方法,属于原地排序,理论上能够节省内存的消耗;
总结
好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15