京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅析大数据隐私问题
为什么要使用大数据?
大数据不同于过去的数据仓库,因为它几乎分析所有类型的数据文件或格式,包括图像、视频以及从社交媒体收集的数据。大数据的另一个特点是它没有像服务器对数据存储的“一对一”的关系,而是依赖虚拟化架构,从大型内容商店和档案中提取内容作为单一全球资源。
在企业管理人员和业务线经理中,使用大数据的最大动机是形成更准确、详细的预测或者推测,从而为企业提供潜在的优势。大数据带来的业务优势很广泛,从新产品开发和改进到最佳定价,再到筛选求职简历和设计有效的营销活动等。事实上,政治运动已经开始利用大数据分析:2012年奥巴马竞选就利用了大数据分析来确定可能投票的选民,然后影响他们,通过他们来筹集竞选资金,并获得选票,这是奥巴马获得最终胜利的关键战略。
大数据隐私问题
FTC最近采取的行动是专门针对数据经纪公司:这种公司收集和分析特定消费者行为数据,然后将分析结果卖给希望提高营销和销售业绩的公司。然而,需要承认的是,使用大数据带来越来越多的隐私问题,这并不仅限于这些传统的数据经纪公司。经济学人信息部(经济学人集团内独立的业务部)公布了使用大数据最多的19个行业领域,包括制造业、IT和技术、金融服务、专业服务、医疗保健、制药和生物技术以及消费品等。毫无疑问,大数据革命已经开始。
根据大数据的特点,以及大数据使用的业务动机,最关键的隐私问题是,简单地说,数据的质量或者准确性;以及企业使用这些数据来作出决定而可能会对个人产生的负面影响。例如,从社交媒体获取的个人信息的准确性?从社交媒体或者其他网络来源的信息可以用于筛选或者排名求职申请,或者提高医疗保险的价格吗?基本的个人资料,例如年龄、婚姻状况、教育或者就业情况通常都是未经验证的。在免费电子邮件服务中同样也没有这些验证,几乎所有用户都会点选接受使用条款和私隐声明,表明同意放弃用于数据汇总的一定程度的隐私权利。
另一个质量问题是,当收集互联网搜索字词或短语时,可能会对它们存在误解。企业利用大数据不佳的例子包括使用互联网搜索词条来评估产品定价,或者潜在目标客户。要知道,在家庭计算机中可能有多个用户,并且有很多原因某人在网上搜索与他们无关的主题。这种类型的数据收集、分析和使用可能产生有问题的分析结果,从而导致错误的决策,而最终造成个人和分析数据的企业两败俱伤的局面。这种缺乏对大数据质量的控制将我们指向另一个隐私保护原则,即收集符合且适合既定目标的个人数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20