京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能在企业应用中的道德规范
AI是指智能水平不亚于甚至超过人类的软件产品,也称为“强AI”。但上述新项目对AI的定义还包括补充或取代人类决策的机器学习和数据驱动算法。
例如,有证据表明,当黑皮肤的使用者把手放在传感器上时,某些自动皂液器不起作用。这些系统由开发人员用自己的手进行测试,但没有在肤色不同的用户身上进行测试。这个例子说明人类创造的算法会按照开发者的观点和偏见行事。
有多少首席执行官真正知道他们的公司如何获得和使用AI和AI算法?
人工智能(AI)越来越多地被用于企业应用,它可以通过解析数据来获得对客户和竞争对手的有用洞见,从而提供竞争优势。但还有一个并行的趋势:评估AI和企业AI算法的道德影响。
就在去年,麻省理工学院(MIT)和哈佛大学共同开展了一个探索AI道德规范的项目,耗资2700万美元。最近,谷歌在2014年收购的英国私企DeepMind Technologies组建了一支新的研究团队,致力于研究AI道德规范。近期其他的AI道德规范项目包括IEEE全球人工智能和自主系统道德考量计划、纽约大学AI Now研究所和剑桥大学Leverhulme未来智能研究中心。
AI道德规范为什么如此令人感兴趣,这对企业组织意味着什么?
最近发生的灾难性品牌名声受损和舆论抨击揭示了将AI部署到企业中可能伴随的道德、社会和企业风险。
AI的定义
一些专家坚持认为,AI是指智能水平不亚于甚至超过人类的软件产品,也称为“强AI”。但上述新项目对AI的定义还包括补充或取代人类决策的机器学习和数据驱动算法。
如果接受后面这个更广泛的定义,那么我们必须认识到,AI多年来就已经是电脑时代的特征。如今,在大数据、互联网和社交媒体时代,使用人工智能带来的许多优势已经广为人知,受到普遍认可:人工智能可以为企业提供竞争优势、提升效率、洞悉客户及其行为。
运用算法来发现数据中的重要模式和价值,这几乎被一致认为是价值创造的省钱途径,特别是在市场导向的竞争环境中。但AI道德规范项目的兴起证明,这些看似有利的AI应用可能会适得其反。最近发生的灾难性品牌名声受损和舆论抨击揭示了将AI部署到企业中可能伴随的道德、社会和企业风险。
企业组织应该仔细思考他们使用AI的方式,因为这也会带来商业风险。
企业如果未能发现AI算法或机器学习系统开发人员的潜在偏见,就可能会将企业中所有利益相关者的偏见系统化。
人的偏见和歧视
AI算法和我们用来训练这些算法的数据集通常来自人类。因此,这些算法不可避免地反映了人的偏见。例如,有证据表明,当黑皮肤的使用者把手放在传感器上时,某些自动皂液器不起作用。这些系统由开发人员用自己的手进行测试,但没有在肤色不同的用户身上进行测试。这个例子说明人类创造的算法会按照开发者的观点和偏见行事。
这些偏见通常是无意的,但无论造成的后果是否有意为之,犯下上述错误的公司都会面临潜在风险。更重要的是,不管有意还是无意,人造算法可能固有的人类偏见在很大程度上逃避了审查,从而导致使用AI的企业面临风险。
企业如果未能发现AI算法或机器学习系统开发人员的潜在偏见,就可能会将企业中所有利益相关者的偏见系统化。这会使企业面临品牌名声受损、法律诉讼、舆论抨击的风险,还可能失去员工和客户的信任。
企业应该为自己和社会所做的是否不仅仅是遵纪守法?企业能否自信地说自己对AI的使用是公平的、透明的、对人类负责的?
AI的广泛应用和风险
存有偏见的皂液器只是一个例子,AI算法还可以用于招聘、量刑和安保行动。它们是社交媒体正常运行或不正常运行的内在因素。
简而言之,AI被用于无数的日常和专业工作。它正变得无处不在,它对企业的潜在风险也是如此。我们面临的挑战是理解算法如何设计和审查,以避免开发者的观点和偏见(不管是有意还是无意)。这提出了具有挑战性的问题。
有多少首席执行官真正知道他们的公司如何获得和使用AI和AI算法?(许多公司与第三方AI解决方案提供商合作。)
企业尽职调查是一项法律要求,这是否包括审查企业如何生成和使用AI应用程序?对于使用AI的企业来说,尽职调查和合规性的法律定义是否全面?道德规范和企业责任的传统概念是否适用于此?
企业应该为自己和社会所做的是否不仅仅是遵纪守法?企业能否自信地说自己对AI的使用是公平的、透明的、对人类负责的?
想要回答这些问题,企业必须审视和阐明自己在企业道德方面的立场,并运用系统性方法来评估风险。
助长趋势
两个趋势可能加剧对AI应用和AI用户进行风险评估的紧迫性和重要性。首先,消费者、公民和政策制定者越来越重视和担心人工智能的日益普及和可能造成的滥用或意外后果。由此产生的结果是,透明度,公平性和问责制作为竞争优势得到了更多关注。
最终,我们希望能够确定重要的价值观,将它们嵌入到AI算法的设计中,了解相关风险,继续验证个人、企业和社会在AI实践方面的有效性。
行动号召
解决这些问题的第一步是意识。你的公司如何使用AI,谁可能受到影响?是否需要聘请外部专家来进行评估?
阐明你公司的核心价值观也很重要。你使用AI的方式是否符合那些价值观?如果不是,如何才能让二者相符?
有资源可以帮助解决这一问题。例如,我是IEEE全球人工智能和自主系统道德考量计划的执行成员,该计划致力于研究各种AI相关应用的最佳实践,提供有助于加强这方面认识和决策指导的资源,制定AI应用的标准。(IEEE是指电气与电子工程师协会,是最大的技术专业组织,致力于推动技术发展,造福人类。)
一个重要的资源是该计划的“符合伦理的设计:人工智能和自主系统优先考虑人类福祉的愿景”。这份文件已发布第二版,鼓励技术人员在开发自主和智能技术的过程中,把道德考量放在优先位置。
该计划与IEEE标准协会展开了密切合作。最近,IEEE标准协会开始制定儿童和学生数据治理、雇主透明实践和人类介入式AI的标准,确保由人类价值观来引导影响我们每个人的算法开发。
最终,我们希望能够确定重要的价值观,将它们嵌入到AI算法的设计中,了解相关风险,继续验证个人、企业和社会在AI实践方面的有效性。
请放心,这是一个新兴的话题,本文表达的担心和目标仍然是人们积极研究的领域。然而,想要在AI时代成为对社会负责任的企业,企业领导者必须意识到问题所在,开始识别企业价值观,将之嵌入到AI应用程序的道德设计中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26