京公网安备 11010802034615号
经营许可证编号:京B2-20210330
人工智能在企业应用中的道德规范
AI是指智能水平不亚于甚至超过人类的软件产品,也称为“强AI”。但上述新项目对AI的定义还包括补充或取代人类决策的机器学习和数据驱动算法。
例如,有证据表明,当黑皮肤的使用者把手放在传感器上时,某些自动皂液器不起作用。这些系统由开发人员用自己的手进行测试,但没有在肤色不同的用户身上进行测试。这个例子说明人类创造的算法会按照开发者的观点和偏见行事。
有多少首席执行官真正知道他们的公司如何获得和使用AI和AI算法?
人工智能(AI)越来越多地被用于企业应用,它可以通过解析数据来获得对客户和竞争对手的有用洞见,从而提供竞争优势。但还有一个并行的趋势:评估AI和企业AI算法的道德影响。
就在去年,麻省理工学院(MIT)和哈佛大学共同开展了一个探索AI道德规范的项目,耗资2700万美元。最近,谷歌在2014年收购的英国私企DeepMind Technologies组建了一支新的研究团队,致力于研究AI道德规范。近期其他的AI道德规范项目包括IEEE全球人工智能和自主系统道德考量计划、纽约大学AI Now研究所和剑桥大学Leverhulme未来智能研究中心。
AI道德规范为什么如此令人感兴趣,这对企业组织意味着什么?
最近发生的灾难性品牌名声受损和舆论抨击揭示了将AI部署到企业中可能伴随的道德、社会和企业风险。
AI的定义
一些专家坚持认为,AI是指智能水平不亚于甚至超过人类的软件产品,也称为“强AI”。但上述新项目对AI的定义还包括补充或取代人类决策的机器学习和数据驱动算法。
如果接受后面这个更广泛的定义,那么我们必须认识到,AI多年来就已经是电脑时代的特征。如今,在大数据、互联网和社交媒体时代,使用人工智能带来的许多优势已经广为人知,受到普遍认可:人工智能可以为企业提供竞争优势、提升效率、洞悉客户及其行为。
运用算法来发现数据中的重要模式和价值,这几乎被一致认为是价值创造的省钱途径,特别是在市场导向的竞争环境中。但AI道德规范项目的兴起证明,这些看似有利的AI应用可能会适得其反。最近发生的灾难性品牌名声受损和舆论抨击揭示了将AI部署到企业中可能伴随的道德、社会和企业风险。
企业组织应该仔细思考他们使用AI的方式,因为这也会带来商业风险。
企业如果未能发现AI算法或机器学习系统开发人员的潜在偏见,就可能会将企业中所有利益相关者的偏见系统化。
人的偏见和歧视
AI算法和我们用来训练这些算法的数据集通常来自人类。因此,这些算法不可避免地反映了人的偏见。例如,有证据表明,当黑皮肤的使用者把手放在传感器上时,某些自动皂液器不起作用。这些系统由开发人员用自己的手进行测试,但没有在肤色不同的用户身上进行测试。这个例子说明人类创造的算法会按照开发者的观点和偏见行事。
这些偏见通常是无意的,但无论造成的后果是否有意为之,犯下上述错误的公司都会面临潜在风险。更重要的是,不管有意还是无意,人造算法可能固有的人类偏见在很大程度上逃避了审查,从而导致使用AI的企业面临风险。
企业如果未能发现AI算法或机器学习系统开发人员的潜在偏见,就可能会将企业中所有利益相关者的偏见系统化。这会使企业面临品牌名声受损、法律诉讼、舆论抨击的风险,还可能失去员工和客户的信任。
企业应该为自己和社会所做的是否不仅仅是遵纪守法?企业能否自信地说自己对AI的使用是公平的、透明的、对人类负责的?
AI的广泛应用和风险
存有偏见的皂液器只是一个例子,AI算法还可以用于招聘、量刑和安保行动。它们是社交媒体正常运行或不正常运行的内在因素。
简而言之,AI被用于无数的日常和专业工作。它正变得无处不在,它对企业的潜在风险也是如此。我们面临的挑战是理解算法如何设计和审查,以避免开发者的观点和偏见(不管是有意还是无意)。这提出了具有挑战性的问题。
有多少首席执行官真正知道他们的公司如何获得和使用AI和AI算法?(许多公司与第三方AI解决方案提供商合作。)
企业尽职调查是一项法律要求,这是否包括审查企业如何生成和使用AI应用程序?对于使用AI的企业来说,尽职调查和合规性的法律定义是否全面?道德规范和企业责任的传统概念是否适用于此?
企业应该为自己和社会所做的是否不仅仅是遵纪守法?企业能否自信地说自己对AI的使用是公平的、透明的、对人类负责的?
想要回答这些问题,企业必须审视和阐明自己在企业道德方面的立场,并运用系统性方法来评估风险。
助长趋势
两个趋势可能加剧对AI应用和AI用户进行风险评估的紧迫性和重要性。首先,消费者、公民和政策制定者越来越重视和担心人工智能的日益普及和可能造成的滥用或意外后果。由此产生的结果是,透明度,公平性和问责制作为竞争优势得到了更多关注。
最终,我们希望能够确定重要的价值观,将它们嵌入到AI算法的设计中,了解相关风险,继续验证个人、企业和社会在AI实践方面的有效性。
行动号召
解决这些问题的第一步是意识。你的公司如何使用AI,谁可能受到影响?是否需要聘请外部专家来进行评估?
阐明你公司的核心价值观也很重要。你使用AI的方式是否符合那些价值观?如果不是,如何才能让二者相符?
有资源可以帮助解决这一问题。例如,我是IEEE全球人工智能和自主系统道德考量计划的执行成员,该计划致力于研究各种AI相关应用的最佳实践,提供有助于加强这方面认识和决策指导的资源,制定AI应用的标准。(IEEE是指电气与电子工程师协会,是最大的技术专业组织,致力于推动技术发展,造福人类。)
一个重要的资源是该计划的“符合伦理的设计:人工智能和自主系统优先考虑人类福祉的愿景”。这份文件已发布第二版,鼓励技术人员在开发自主和智能技术的过程中,把道德考量放在优先位置。
该计划与IEEE标准协会展开了密切合作。最近,IEEE标准协会开始制定儿童和学生数据治理、雇主透明实践和人类介入式AI的标准,确保由人类价值观来引导影响我们每个人的算法开发。
最终,我们希望能够确定重要的价值观,将它们嵌入到AI算法的设计中,了解相关风险,继续验证个人、企业和社会在AI实践方面的有效性。
请放心,这是一个新兴的话题,本文表达的担心和目标仍然是人们积极研究的领域。然而,想要在AI时代成为对社会负责任的企业,企业领导者必须意识到问题所在,开始识别企业价值观,将之嵌入到AI应用程序的道德设计中。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01