京公网安备 11010802034615号
经营许可证编号:京B2-20210330
SPSS操作:多个相关样本的非参数检验(Cochran's Q检验)
一、问题与数据
某康复科医生拟评价康复训练对卒中后患者体能恢复的效果。患者分别在开始康复、康复3个月和康复6个月时进行体能测试。为了保证一致性,三次体能测试内容是一样的,体能测试的结果为“通过”和“不通过”。该医生想知道卒中后患者体能测试的结果为“通过”的比例是否一直上升。
该研究随机选取了63例进行康复训练的卒中后患者,并收集了所有研究对象的开始康复时的体能测试结果 (initial_fitness_test),康复3个月时的体能测试结果 (month3_fitness_test)和康复6个月时的体能测试结果 (final_fitness_test)。结果均为“通过(Passed)”和“不通过(Failed)”的形式(分别赋值为1和2)。部分数据如下图。
其中,Individual scores for each paticipant列出了每一个研究对象的情况,而Total count data (frequencies)则是对相同情况研究对象的数据进行了汇总。
二、对问题的分析
要检验三组或多组相关样本中,分类变量是否存在差异,可以使用Cochran's Q 检验,但需要考虑以下4个假设。
假设1:结局变量为二分类,且两类之间互斥。互斥是指一个研究对象只能在一个分组中,不可能同时出现在两个组中。例如 “安全”和“不安全”,“及格”和“不及格”等。
假设2:分组变量包含3个及以上分类,且各组之间相关。(当分组变量只有2个分类时,可使用McNemar’s检验)
假设3:样本是来自于研究人群的随机样本。然而实际中,样本并非都是随机样本。
假设4:样本量足够。当样本量n≥4且nk≥24(k为分组变量数)时,可以采用Cochran's Q检验;否则采用“精确” Cochran's Q检验。
本研究中,结局变量有两个分组且互斥(“通过”和“不通过”),符合假设1;分组变量包含3个分类(开始康复、康复3个月和康复6个月时),各组之间相关,符合假设2;研究对象是随机选取,符合假设3。
那么应该如何检验假设4,并进行比较呢?
三、SPSS操作
3.1 检验假设4:样本量足够
1. 转换数据格式
如果原始数据格式是Total count data (frequencies),则可以跳过此步。如果原始数据格式是Individual scores for each paticipant,则需要将数据转换成Total count data (frequencies)格式。
在主界面点击Data→Aggregate,出现Aggregate Data对话框。将变量initial_fitness_test、month3_fitness_test和final_fitness_test选入Break Variable(s)框中。
点击下方Number of cases框,并在Name框中填入“freq”。在Save下方勾选Create a new dataset containing only the aggregated variables,并在Dataset name框中填入新数据集的名字(例如“cochran_q_freq”)。
点击OK,产生新数据集。在新数据集中,可以看到新变量“freq”,代表每一种自变量组合的频数。
2. 数据加权
使用Total count data (frequencies)格式数据,并在主界面点击Data→Weight Cases,弹出Weight Cases对话框后,点击Weight cases by,激活Frequency Variable窗口。将freq变量放入Frequency Variable栏,点击OK。
3. 计算样本量
本研究的总样本数N=63,但计算Cochran's Q 检验的样本量时,需要减去三次测试结果都一致的样本数。如下突出显示所示,全部为“Failed”有20例,全部为“Passed”有7例,所以三次测试结果都一致的样本数为20+7=27,Cochran's Q 检验的样本量n=63-27=36。
其次,需要确定nk的大小。由于本研究共有三个分组,所以k=3,nk=36*3=108。
综上,n≥4且nk≥24,符合假设4。
3.2 计算比例
在主界面点击Descriptive Statistics→Frequencies,在Frequencies对话框中,将变量initial_fitness_test、month3_fitness_test和final_fitness_test选入Variable(s):框中,点击OK。
3.3 符合假设4的Cochran's Q检验
在主界面点击Analyze→Nonparametric Tests→Related Samples,出现Nonparametric Tests: Two or More Related Samples对话框。确认在What is your objective?区域勾选了Automatically compare observed data to hypothesized。
点击Fields,将变量initial_fitness_test、month3_fitness_test和final_fitness_test选入Test Fields框中。
点击Settings→Customize tests,勾选Cochran's Q (k samples)。
点击Define Success,在Cochran's Q: Define Success对话框中,点击Combine values into success category,在Success框中填入1(这里是“成功”对应的编码,本例中即为通过体能测试,“Passed”对应的是1,所以这里填“1”)。
点击OK→Run,输出结果。
3.4 不符合假设4的“精确”Cochran's Q检验
当不符合假设4时,需要使用“精确”Cochran's Q检验。在主界面点击Analyze→Nonparametric Tests→Legacy Dialogs→K Related Samples,出现Tests for Several Related Samples对话框。
将变量initial_fitness_test、month3_fitness_test和final_fitness_test选入Test Variables框中。在Test Type 下方去掉Friedman,然后勾选Cochran's Q。(如果数据符合假设4,则此时点击OK,结果与3.3部分的操作结果一致)
点击Exact,在Exact Tests对话框中,点击Exact,点击Continue→OK。
3.5 “精确”Cochran's Q检验后的两两比较
对于符合假设4的Cochran's Q检验(3.3部分),事后的两两比较将在结果解释部分展示(4.2部分)。
对于不符合假设4的“精确”Cochran's Q检验(3.4部分)事后的两两比较,可采用经Bonferroni法校正的多重McNemar检验。
在主界面点击Analyze→Nonparametric Tests→Legacy Dialogs→2 Related Samples。在Two-Related-Samples Tests对话框中,依次选择两两比较的变量,分别将变量initial_fitness_test和month3_fitness_test、变量initial_fitness_test和final_fitness_test、变量month3_fitness_test和final_fitness_test选入右侧Test Pairs中。 去掉Test Type下方的Wilcoxon,勾选McNemar。
点击Exact,在Exact Tests对话框中,点击Exact,点击Continue→OK。
四、结果解释
4.1 统计描述
3.2部分的操作后,得到的频数结果见下图。康复开始、康复3个月和康复6个月时培的体能测试的通过率分别为22.2%、44.4% 和 60.3%。
4.2 符合假设4的Cochran's Q检验及事后两两比较
3.3部分的操作后,得到Cochran's Q检验的结果如下图。
上图中,第一列(Null Hypothesis)是本研究的零假设。第二列(Test)显示本研究的假设检验方法,即Cochran's Q检验。第三列(Sig.)是假设检验的统计结果,即P值。第四列(Decision)是根据假设检验做出的判断,即判断是否拒绝零假设。
本研究Cochran's Q检验的P<0.001,拒绝零假设。即开始康复、康复3个月和康复6个月时,研究对象体能测试结果的差异具有统计学意义。
双击该表,SPSS会自动弹出Model Viewer界面,帮助我们进一步了解Hypothesis Test Summary表的结果。
Cochran's Q检验统计量服从自由度为k-1的 χ2分布。本研究的统计量为24.222,此时统计量可记为 χ2 = 24.222, P<0.001。
在该视图下方的View的下拉选项框中,选择“Pairwise Comparisons”,可以得到两两比较的结果。两两比较的方法为Dunn’s检验(经Bonferroni法校正)。
在Pairwise Comparisons图中(此处略),连接线代表两两比较的结果,黑色连接线代表两组间差异无统计学意义,橘黄色连接线代表两组差异具有统计学意义。
下方的表格(如下图)给出了更多的信息:比较的组别、统计量、标准误、标准化的统计量(=统计量/标准误)、P值和调整后的P值。
由于是事后的两两比较(Post hoc test),因此需要调整显著性水平(调整α水平),作为判断两两比较的显著性水平。依据Bonferroni法,调整α水平=原α水平÷比较次数。本研究共比较了3次,调整α水平=0.05÷3=0.0167。因此,最终得到的P值(上图中Sig.一列),需要和0.0167比较,小于0.0167则认为差异有统计学意义。
另外,SPSS也提供了调整后P值(上图中Adj. Sig.一列),其思想还是采用Bonferroni法调整α水平。该列是将原始P值乘以比较次数得到,因此可以直接和0.05比较,小于0.05则认为差异有统计学意义。
以上结果可以描述为:康复开始和康复3个月时研究对象体能测试结果的差异有统计学意义(调整后P=0.013),康复开始和康复6个月时研究对象体能测试结果的差异有统计学意义(调整后P<0.001),而康复3个月和康复6个月时研究对象体能测试结果的差异无统计学意义。
4.3 不符合假设4的“精确”Cochran's Q检验
3.4部分的操作中,既可以得到Cochran's Q检验的结果,也可以得到“精确”Cochran's Q检验的结果(取决于是否选择Exact选项)。
结果如下图。在Test Statistics表格中,左侧是Cochran's Q检验结果,右侧是“精确”Cochran's Q检验结果。
如果数据符合假设4,则Cochran's Q检验统计量服从自由度为k-1的 χ2分布。左侧表格中的P值为“Asymp. Sig.”所对应的“0.000”,即P<0.001。本研究的统计量为24.222,此时统计量可记为 χ2 = 24.222,P<0.001。
如果数据不符合假设4,则右侧表格中的P值为“Exact. Sig.”所对应的“0.000”,即P<0.001。本研究的统计量为24.222,此时统计量可记为Cochran's Q = 24.222, P<0.001。
4.4 “精确”Cochran's Q检验后的两两比较
当不满足假设4时,3.5部分的操作可得到经Bonferroni法校正的多重McNemar检验的结果。
由于是事后的两两比较(Post hoc test),因此需要调整显著性水平(调整α水平),作为判断两两比较的显著性水平。依据Bonferroni法,调整α水平=原α水平÷比较次数。本研究共比较了3次,调整α水平=0.05÷3=0.0167。因此,最终得到的P值(上图中Exact Sig. (2-tailed)一行),需要和0.0167比较,小于0.0167则认为差异有统计学意义。
以上结果可以描述为:康复开始和康复3个月时研究对象体能测试结果的差异有统计学意义(P=0.007),康复开始和康复6个月时研究对象体能测试结果的差异有统计学意义(P<0.001),而康复3个月和康复6个月时研究对象体能测试结果的差异无统计学意义。
五、撰写结论
1. 符合假设4时(即样本量足够)
开始康复、康复3个月和康复6个月时,卒中后患者体能测试的通过率分别为22.2%、44.4%和60.3%。运用Cochran's Q 检验对三个时间点体能测试通过率进行检验,三个时间点通过率的差异具有统计学意义,χ2 = 24.222, P<0.001。
采用Dunn’s检验(经Bonferroni法校正)进行事后的两两比较,康复开始和康复3个月时研究对象体能测试结果的差异有统计学意义(调整后P=0.013),康复开始和康复6个月时研究对象体能测试结果的差异有统计学意义(调整后P<0.001),而康复3个月和康复6个月时研究对象体能测试结果的差异无统计学意义(调整后P=0.124)。
2. 不符合假设4时
开始康复、康复3个月和康复6个月时,卒中后患者体能测试的通过率分别为22.2%、44.4%和60.3%。运用Cochran's Q 检验对三个时间点体能测试通过率进行检验,三个时间点通过率的差异具有统计学意义, Cochran's Q = 24.222, P<0.001。
运用“精确”McNemar’s检验进行事后的两两比较(经Bonferroni法校正的α=0.0167)。康复开始和康复3个月时研究对象体能测试结果的差异有统计学意义(P=0.007),康复开始和康复6个月时研究对象体能测试结果的差异有统计学意义(P<0.001),而康复3个月和康复6个月时研究对象体能测试结果的差异无统计学意义(P=0.031)。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26