京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据的三大特性
今天在业内鼓吹大数据时代即将到来的时候,得到最多的仍然是同样两类反应。虚无派说大数据云山雾罩,看不出有什么钱途。停滞派说大数据有什么新奇,老子的数据很大,挖掘技术很高。我想,今后几年的产业发展又将证明这两类说法的无知与荒谬。

一些不肯认真读点想点东西的人,一看到大数据这个词,就望文生义地想到数据要大,却忘记了大数据的其他基本特性,需要反复加以提醒。
大数据的特性之一是数据的完整性和综合性。很多业内朋友一谈起大数据,就习惯性地盘点起自己那点存货,或者那些可以直接从自身服务中可以获取的东西。考虑到目前互联网的发展还在非常初级的阶段,现有网络服务都是简化,扭曲,片面地对现实世界的浓缩和裁剪,由此产生的数据是零乱的,破碎的,局部的,其中所含有的含金量是极其有限的。如果同意这个世界上的万事万物可以而且正在被数据化和网络化,那么由此产生的大数据就必然是完整的和综合的,不仅包括网络公司通过自身服务所获得的用户行为数据,而且包括社会的,经济的,政治的,自然的方方面面的数据。这些数据当然分散在不同企业,机构和政府部门手中,汇聚整合在一起绝非易事,但操作上的困难并不能否定大数据本身的完整性和综合性。今天之所以讨论大数据时代的到来,是因为互联网发展到目前阶段使得现实世界数据化发展到了一定程度,各种信息终端普及到了一定程度,数据获取的成本降到了一定程度,使得完整和综合的数据不仅是一种理想,也正在变为现实。
大数据的特性之二是数据的开放性和公共性。正是因为完整的综合的大数据难以由一家公司,机构或政府部门所获得,所以大数据必然产生于一个开放的,公共的网络环境之中。这种开放性和公共性的实现取决于若干个网络开放平台或云服务以及一系列受到法律支持或社会公认的数据标准和规范。任何封闭的或单向获取的数据都不可能是大数据,无论这些数据的规模有多大。
大数据的特性之三是数据的动态性和及时性。天体物理学和理论物理学早就依赖于从宇宙间获取的大量数据,类似的学科还有环境生态学,医药学,和自控技术。但是,这和我们今天讨论的大数据不是一回事。今天的大数据是基于互联网的及时动态数据,不是历史的或严格控制环境下产生的东西。
所以,今天我们谈论的大数据是完整综合的,开放公共的,动态及时的,这样的大数据是我们过去从未有机会获取利用过的全新挑战,也是我们未来应该努力去争取利用的全新战略机会。如果有人以为过去积累的那点数据就是大数据,或者过去积累的数据处理利用能力和经验就可以在大数据时代自然领先,那不是无知就是狂妄。
在即将到来的大数据时代可以在任何行业,任何服务,任何公共管理上出现,由此可能产生的服务和商业模式是无穷尽的。同现有或现在还没有的服务和商业模式相比,服务更加精准,成本更加低廉,利润更加丰厚。这不是目前网络业所熟知的对现有用户数据的挖掘,不是对用户进行更精细的分组,不是现有数据技术的普及应用,而是一个全新的世界,一个全新的网络地球和数据地球。一个理想的前景是,一个以网络业为核心的大数据服务业会成为今后几十年世界经济和社会发展的主要推动力。当然,这事未必一定发生,尤其是在中国。如果我们网络业的朋友们没有雄心,没有想象力,那也可能除了少数公司成为大数据服务业的主力外,其他大部分公司仍然固守在陈旧的网络业内苦苦挣扎,变成大数据时代的传统产业大军中的一员。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22