京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代,当如何应对
可以说,真正启动大数据在企业和社会的全面应用,面临的不仅仅是技术和工具问题,更重要的是要转变经营思维和组织架构,才能真正地挖掘这座大数据“金矿”。那么在大数据时代,我们要做哪些应对之策,以握战略制胜之点?

确定企业的短中期目标和标准
大数据的资源极大繁杂丰富,如果企业没有明确的目标,就算没有走入迷途至少会觉得非常迷茫。因此,首先,要确定企业运用大数据的短中期目标,定义企业的价值数据标准,之后再使用那些能够解决特定领域问题的工具。逐步推广,步步为营,不要把理想定得太高,否则失望会愈大。
储备好大数据相关技术人才
企业运用大数据为营销管理服务之前,技术团队要到位是基础。企业管理团队要能够非常自如地玩转数据。许多人认为社交媒体营销人是个有趣的工作,其实它是个艰苦的活儿。社交化空间非常注重数据、衡量标准和数据可视化等问题。要能熟悉驾驭,首先要确保企业技术人员已经接受过相关技能培训,了解如何最大化利用大数据的作用和潜力为企业营销管理服务。
解决碎片化问题
企业启动大数据营销管理一个最重要的挑战,是数据的碎片化、零杂化。许多公司组织中,数据都散落在互不连通的数据库中,而且相应的数据技术也都存在于不同部门中,如何将这些孤立错位的数据库打通、互联,并且实现技术共享,才是能够最大化大数据价值的关键。管理者当留意的是,数据策略要成功提升网络营销管理成效,要诀在于无缝对接网络企业管理与营销的每一步骤,从数据收集、到数据挖掘、应用、提取洞悉、报表等。
培养内部整合能力
要做好大数据的应用管理,其一,要有较强的整合数据的能力,整合与来自企业各种不同的数据源、各种不同结构的数据,如客户关系管理、搜索、移动、社交媒体、网络分析工具、普查数据以及离线数据,这些整合而得的数据是定向更大目标受众的基础;其二,要有研究探索数据背后价值的能力。未来营销管理成功的关键将取决于如何在大数据库中挖掘更丰富的营销价值。像是站内、站外的数据整合、多方平台的数据接轨、结合人口与行为数据去建立优化算法等都是未来的发展重点;其三,探索出来之后给予精确行动的管理指导纲领,同时通过此纲领进行精确快速实时性行动。
而从社会、国家领域而言,我国亟须在国家层面对大数据给予高度重视,特别需要从政策制定、资源投入、人才培养等方面给予强有力的支持;另一方面,建立良性的大数据生态环境是有效应对大数据挑战、用好大数据的主要出路,需要科技界、工业界以及政府部门在国家政策的引导下共同努力,通过消除壁垒、成立联盟、大数据质量标准、建立专业组织等途径,建立和谐的大数据生态系统。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29