
数据分析技术 给商业模式带来颠覆的五种方式
近年来,越来越多大型企业开始投资数据分析技术,希望借此证明“我可以做得更好”。
而云计算的兴起,也使得规模有限的初创企业也可拥有将大数据技术与高级数据分析加以结合的能力。在今天的文章中,我们将共同探讨数据分析技术给商业模式带来颠覆的五种方式。
2017年10月10日,腾讯宣布斥资11亿美元投资奥莱,这是匹马市场的头号玩家。但奥拉并不孤单挑战既定的商业模式。
看看优步,亚马逊,Airbnb,edX,Netflix,Society One和TripAdvisor的兴起。他们都看着自己的行业中的一个坚定的人,并说:“我可以做得更好。”
80%的公司预测他们的行业在未来三年将受到新技术的影响。
借助云计算,即使是最小的启动,也可以将大数据技术与高级数据分析结合在一起。每天,发现新的运营和市场见解以及未开发的客户群的能力都在增长。
超过90%的公司认为大数据和分析是战略重点,但贝恩说,只有19%的公司持续采集高质量数据!
大多数竞争对手可能没有利用数据技术,但是你呢?如果你懒惰,你可以保证有一个开始或创新的竞争对手把你的目光投向了你。
数据的力量
大数据已经成为一种强大的资源。如果盲目瞄准潜在客户,公司就无法取得成功。为了蓬勃发展,你需要确切地知道你要去哪里,为什么要去那里,以及你愿意投入到旅程中的努力。
大数据是你的指南。
但是,您需要有清晰的愿景,战略方法和用例来推进您的大数据发现。您需要参与使用分析,以便您拥有整体视图或业务。
要做到这一点,请重新定义如何处理数据并为数据的使用设置基准。
5种方法来挖掘变革性数据
1.战略分析
战略分析是详细的,数据驱动的整个系统分析,以帮助您确定推动客户和市场行为的因素。
战略分析的关键是按照正确的顺序进行:
第1步 - 竞争优势分析以确定您的能力,优势和劣势。
第2步 - 企业分析可在企业,业务单位和业务流程级别获取诊断信息。
第3步 - 人力资本分析在个人层面进行诊断,以获得可操作的见解。
数据应该回答如下关键问题:
什么是为我们带来最大价值的关键决策?
尚未开采的新数据有哪些?
尚未完全探索哪些新的分析技术?
2.平台分析
这有助于您将分析融入您的决策过程中,从而改进核心业务。它可以帮助您的公司利用数据的力量来发现新的机会。
要问的重要问题包括:
我们如何将分析整合到日常流程中?
哪些流程将受益于自动,可重复的实时分析?
我们的后端系统能否受益于大数据分析?
平台分析必须包含多种技术。由于它可以通过多种格式和渠道获得,因此可用于检查组织的脉搏。
它将帮助您将数据分析整合到所有部门的关键决策中,包括销售,市场营销,供应链,客户服务,客户体验和其他核心业务功能。
3.企业信息管理(EIM)
将近80%的重要商业信息存储在非托管存储库中。通过战略和平台分析,EIM可帮助您利用社交,移动,分析和云技术(SMAC)改进数据在公司内的管理和使用方式。
通过使用信息创建,捕获,分发和消费工具构建敏捷数据管理操作,EIM将帮助您:
简化您的业务实践。
加强协作努力。
提高员工在办公室内外的工作效率。
在定义您的EIM战略时,确定业务需求,关键问题以及启动EIM的机会。此外,确定潜在的项目和项目,其成功率将受益于EIM。
4.商业模式转型
采用大数据分析和并行转换业务模式的公司将为收入来源,客户,产品和服务创造新的机遇。
从预测需求和采购材料到会计,以及员工的招聘和培训,您的业务的每个方面都可以重新设计。
所需的更改包括:
拥有大数据战略和愿景,能够识别并利用新机会。
培养创新和实验数据的文化。
了解如何利用新技能和新技术,并管理他们对如何访问和维护信息的影响。
与持有重要数据的消费者建立信任关系。
在核心行业内外创建合作伙伴关系。
找到快速洞察和实施结果的方法。
5.建立以数据为中心的业务
您是否生成大量数据?这些数据是否会使您行业内外的其他组织受益?
以数据为中心的业务不仅仅是一种资产,而是货币。这是您核心竞争力的源泉,它的价值体现在黄金上。
主要有三类数据分析:
透视:包括挖掘,清理,群集和细分数据,以了解客户及其网络,影响力和产品洞察力
优化:分析业务功能,流程和模型。
创新:探索新的颠覆性商业模式,以促进客户群的发展和成长。
已建立的商业模式受到攻击
数据分析正在迅速推翻我们开展业务的方式。这五种数据分析的变革性应用将帮助您成为具有前瞻性思维的公司,并在市场中获得竞争优势。
没有哪个行业的数据分析不能从中受益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15