
大数据浪潮下的智慧城市
随着云计算,物联网,大数据等技术的飞速发展,智慧城市成为了当今国内外城市建设与发展的趋势与热点,全球范围内掀起了智慧城市的建设热潮,智慧交通、智慧安防、智慧医疗……未来智慧城市的美好图景已经被勾勒出来。然而,国内的物联网和智慧城市建设在大的发展契机下同样有很多挑战和疑问:智慧城市的本质内涵、特征是什么?精髓在哪里?物联网、智慧城市建设发展的相关关键技术是什么?带着这些疑问,我们采访了清华同方物联网产业应用本部技术总监赵英博士。
物联网产业应用本部技术总监赵英博士
以城市运行体征管理为核心大数据为支撑
2013年,从IBM提出“智慧城市”到温总理畅想“感知中国”,每一个概念的提出都表明了关注物联网和城市信息化建设的人群越来越多,清华同方结合自己在传统的电子政务上的优势,提出城市运行体征管理,以城市运行体征管理为核心的智慧城市或者物联城市总体架构和思路。
何为城市运行体征管理?赵博士打了一个很恰当的比方,我们每个人的身体作为一个载体会有各项指标,当我们生病去医院的时候会检查身体的各项指标,城市运行同样是有指标,这些指标贯穿城市规划、城市建设、城市运行的全过程,同方把这些指标梳理并划分出五大领域:基础设施、公众服务、公关安全、政务管理、资源统筹,然后把这五个领域和指标之间建立一种体征,通过各种系列化,体系化的体征指标把一个城市的运行状况全面展示出来。
城市运行体征综合管理平台
城市运行中不同领域的体征分布在各个部门当中,同方所要做的就是帮助城市管理者,把各个部门有关城市运行状态的数据拿过来,展示给管理者,引导城市管理由“经验治理”转向“科学管理”。如何才能把指标和数字全面展示出来?这就是数据驱动城市运行。赵博士表示,“城市”每天能够产生数以万计的数据,而只有在线和经过分析处理的数据才是有意义的,智慧城市是否真正实现智慧,对爆炸式增长的海量信息的智慧处理就显得尤为关键。只有通过大数据处理技术的分析、挖掘、应用、管理,才能从海量、复杂、实时的信息中实现便捷与智慧的应用。赵博士在谈到同方在物联网行业的积累时表示,同方从2003年提出了M2M平台,2005年提出DCM战略并开发出了发出了国际先进的“ezM2M物联网业务基础平台”,现在已建立起以ezM2M平台为基础,数据资源管理平台为支撑的城市运行体征管理和大数据信息服务的综合管理体系,且已实现并搭建了各种物联网行业应用,真正地释放了智慧城市的价值和能量。
北京7.21暴雨启示:IT可以城市更智慧
北京“7·21”暴雨造成城市一片汪洋的情景历历在目,受灾人数众多,经济损失巨大,暴雨过后引发的关于“智慧城市”的思考并没有如暴雨一样退去,不得不让人重新审视都市光鲜外表背后的种种隐痛,IT怎么样才能让城市更加智能化?
赵博士表示,城市的安防和交通必须着眼于长效根本的解决之道,深挖根源,综合治理,防治结合,不能哪里出了漏洞去堵哪里。同方参与了一些受灾地区应急管理信息化的建设,风险源的物联网监测预警是其中的一个课题,赵博士举例到,在原来的应急平台进行改造和提升,采用相关技术对重点受灾区域进行监测,目前这个项目正在实施过程当中,预计9月份、10月份就能验收看到成效,这个只是其中的一小点。另外赵博士提到了水位的监测,它可以监测桥下,比如立交桥容易积水的路段,在一些重点立交桥下安装水位剂,利用物联网技术做预警工作,现在随着物联网技术的推进,除了对历史数据的挖掘采集,实时数据的挖掘是未来的一种趋势,缩短每个立交桥数据采集的时间间隔,及时发现一些规律和分析并发出预警,在点位数少数据量不够大的情况下,同样能够解决一大部分问题。
另外赵博士表示,国内目前普遍存在的问题是只重视硬件建设,而忽视软件和信息系统建设。而在国外,非常重视软件建设,掌握了数据,即掌握了主动;只有对数据做分析,才会发现公共安全的客观规律,才会发现突发事件的机理和成因;只有有了数据,才有指标体系,才有应急的量化管理,才有应急管理能力的真正提升,才能真正意义上的根除城市安防交通、灾害等一系列的问题。
在畅想未来的智慧城市时,赵博士谈到,希望在未来每个人都能够通过日常生活、工作当中有一系列的量化的东西做出更科学的决策,城市智慧体现在人的智慧,每个人都发挥自己的智慧的时候,这个城市会变得更加智慧,这就是一个未来很美好的智慧环境和蓝图。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29