
数据科学家:为什么我要离职…
我是一名数据科学家。
很多人都认为数据科学家是21世纪最性感的工作,作为数据科学家有丰厚的薪资,这无疑是一份理想工作。该领域聚集了大量高精尖人才,他们热衷于解决复杂的问题,而且热爱他们的工作。
然而事实上根据英国《金融时报》的报道,数据科学家通常“每周会花1到2个小时寻找新工作”。此外,文章还指出:“在声称寻找新工作的开发者中,机器学习专家位居第一占比达到14.3%。数据科学家紧随其后,为13.2%。“这些数据来自由Stack Overflow对6万4千名开发者的调研。
对此我深有体会,最近我刚换了新的数据科学工作。
为什么有那么多的数据科学家在找新工作呢?
在回答这个问题之前,我想声明的是我仍然是一名数据科学家。我热爱这份工作,我也不想阻止那些想成为数据科学家的人,因为这份工作有趣,刺激而有价值。本文的目的是向你们介绍这份工作背后不那么光鲜的一面。
从我看来,数据科学家主要出于四个原因对他们的工作感到不满。
1. 期望与现实不符
我认识的许多初级数据科学家(包括我自己)入行都是由于,在我们看来数据科学家使用新型的机器学习算法去解决复杂问题,从而对业务产生巨大影响。我们会觉得这份工作比之前做的任何工作都重要。但是,情况往往不是如此。
在我看来,期望与现实不符是许多数据科学家离职的终极原因。当中具体有很多原因,在此我不能一一列举,这里只举出我所遇到的情况。
每家公司情况不同,不能一概而言。但是据我所知,许多公司在聘请数据科学家时,并没有配备适当的基础设施,让其能够从AI中得出有价值的结论。再加上这些公司在招聘初级数据从业人员之前,并没有聘请经验丰富的资深数据专家,这样就会导致双方关系不融洽,无法达到互相期望值。
数据科学家希望在工作中,通过编写智能机器学习算法得出分析见解。但他们很难做到这点,因为他们的首要工作是整理数据基础架构,得出分析报告。相比之下,公司只希望他们能够每天在董事会中提交相应的图表。之后公司因为没有及时得到数据的价值而感到失望,所有这些又会导致数据科学家对工作的不满。
Robert Chang在他的文章中对初级数据科学家提供了很宝贵的建议:
“评估自身的期望与所处环境的关键路径是否一致非常重要。因此需要找到关键路径与你相符的项目、团队和公司。”
这突显了雇主和数据科学家之间的双向关系。如果公司的决策发展与数据科学家的目标不一致,那么数据科学家离职只是时间问题。
数据科学家感到失望的另一个原因与我对学术界失望的原因类似。我认为我能对全球各地的人们产生巨大的影响,而不仅仅是在公司内部。事实上,如果公司的核心业务不是机器学习(我的上家公司是媒体出版公司),那么你所进行的数据科学工作可能只会带来少量的价值。也许这些工作能累积带来很有价值的内容,或者你幸运地发现一个大项目,但这不并太常见。
2. 决策至上原则
我曾经早上6点起来研究支持向量机。当时我想:“这真的很难,但至少会给我未来的雇主带来价值。“ 但如果我有时光机的话,我会回到过去打消这个念头。
如果你认为掌握大量机器学习算法能让你成为最有价值的数据科学家,那么回到我说的第一点:期望与现实不符。
事实是,公司中的领导阶层需要对你有好印象。这意味着你必须不断做领导层安排的工作,比如从数据库中获取数字,在适当的时间交给相关人员,做简单的项目,以便得到上级的好评。在我的上一份工作中,我做了大量这类工作。尽管这会让人沮丧,但却是工作的必要组成部分。
3. 数据方面的全能专家
公司中的领导层往往不太明白“数据科学家”的含义。这意味着在大家眼中,除了分析专家、报告专家,你还是数据库专家。
不仅仅是非技术的同事这么认为。技术方面的其他同事会认为你掌握任何与数据相关的知识。你掌握Spark、Hadoop、Hive、Pig、SQL、Neo4J、MySQL、Python、R、Scala、Tensorflow、A / B测试、NLP、以及任何机器学习和数据相关的知识。
如果在职位描述中你看到了这些具体的内容,请保持谨慎态度。这反映了该公司的工作规范,他们不清楚自身的数据策略,因为他们认为雇用的数据从业人员能够解决所有的数据问题。
但是试图告诉他人你真正掌握的技能是很难的。不是因为其他人会轻视你,而是因为作为缺少经验的初级数据科学家,你担心他人会轻视你。这是一个很棘手的情况。
4. 在孤立的团队中工作
当我们看到成功的数据产品时,我们经常会看到具有智能功能的用户界面设计。重要的是当中有输出,能够被用户感知并解决相关问题。
数据科学家花时间学习编写和执行机器学习算法,然而他们只构成团队中的一小部分。这意味着独立工作的数据科学团队将难以提供价值!
尽管如此,许多公司由数据科学团队提出自己的项目,并通过编程来尝试解决问题。在某些情况下,这能够满足要求。例如,如果需要的只是每季度生成静态电子表格。
另一方面,如果目标是在定制的网站开发产品中优化提供智能建议,那么当中将涉及许多不同的技能,绝大多数是数据科学家所不具备的。因此,如果项目是由孤立的数据科学团队承担,那么很可能会失败(或者需要很长时间,因为组织孤立的团队进行大型企业的协作项目并不容易)。
结语
因此,要在行业中成为合格的数据科学家,仅仅在参加Kaggle比赛并学习在线课程是远远不够的。
在找数据科学工作时,找到与自身的关键路径保持一致的公司是很重要的。但是,你也需要调整自身对数据科学家职位的期望。
希望我没有打击你成为数据科学家的信心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29