
大数据如何帮助我们改善大气环境
大数据可以把现有的旧能源网络变成更加智能的网络,能够了解个人的能源消耗状况。这无疑将提高效率,降低能源价格并帮助我们减少碳排放量。
智能能源网格
在不久的将来,将有越来越多的家电设备带有传感器。这些传感器能够在能源公司、家庭智能仪表和电器之间进行双向通信。当所有的家用电器都通过传感器连接到互联网时,我们就可以根据需要,对单个设备的能耗进行监测和调整。越来越多的能源机构正在开发智能电表来记录单个家用电器设备的电能消耗情况。而这些信息将返回到能源公司,使得能源公司可以了解和预测能源需求。我们相信,随着研发工作的进一步深入,实时监控和调整能源需求将只是时间问题。
当越来越多的设备具备了传感器之后,产品之间也将能够相互通信交流,甚至是进行跨不同网络的通信。这将帮助能源企业更好地了解和管理整个网络的能源利用率。对于未来的电动汽车来说,这是相当有用且重要的。当消费者回家后将电动汽车的充电和其他家用电器同时开启时,能源电网可能无法应付这一需求的高峰期。因此,越多的电器设备具备了传感器,就越能够与能源网络进行通信和沟通,能源公司也就能够更好的管理其网络内的能量分布。
但是,真正的智能电网距离我们仍然还十分遥远。据以太网之父鲍勃·梅特卡夫表示,智能电网可以提供“大量廉价和清洁的能源”。他创造了一个由互联网影响的智能电网,称为“Enernet”愿景。
这种智能电网也将同时能够防止能量在网络中的损失并防止停电事故的发生。传感器系统可以同步的实时监测电线的状况,每秒钟都能收集多个数据流。这些信息可以更容易地检测到停电事故。当确实发生停电事故时,其可以使得能源公司的响应速度更快、更好。这种传感器还可以检测能量是如何在网络中传输的,以及在何时何地发生了能量损失。这些信息实时传递反馈给能源公司的控制中心,能够帮助他们实时的需求进行调整。
西北太平洋的巴特尔智能电网示范项目就是这样的一个智能电网试点。该试点项目的六万名参与者来自美国的五个州。该项目旨在确定智能电网是否向我们所认为的那样有价值,是否更具经济效益。一个智能电网需要在在硬件和软件方面进行大量的投资。其也将极大地帮助我们收集数据信息:从之前的记录一个仪表一个月之内的读数变为智能电表每15分钟记录一次读数。也就是每天每百万智能电表共计记录9600万次读数。其结果是数据信息增加了3000倍,如果不加以妥善管理,这些数据信息将是相当繁杂的。
改变消费者的行为
如果消费者可以根据实时数据和能源价格管理他们自己的能源消耗,将可能会改变他们的行为。一款智能电表可以基于需求预测建议消费者在稍后某个时刻能源成本降低时使用某款电器设备。这将帮助能源公司更好地管理能源需求。如果某款电器设备(例如加热器)可以基于价格范围和网络的能量需求自行决定在最佳时间开始工作,这无疑将产生更好的效果。
预测需求和价格
与数以百万计的电器相连接的智能电网能够预测能源消费量。监测设备如何使用能源,并提供有价值的数据信息,并进一步分析预测对于能源的需求状况和可能出现的能源短缺。此信息可用于在合适的时间和地点提供适量的能量。其可以帮助平衡不同时间和地点的能源需求高峰。能源分销机构可以提高顾客满意度,并通过减少停电的次数和持续时间遵守相关的合规性。如果能源公司能够找到发生网络故障与相关停电事故之间的联系,那么这就表明他们能够精确确定和识别发生故障的位置,并实时的提供相关的解决方案。
当智能电网平衡了能源需求的高峰之后,网络将变得更可靠。而目前的网络问题在于,不仅仅是没有这么大的网络容量,而且还需要应对高需求的能力。智能电网可以帮助防止极端高峰所导致的断电。
大数据也将有助于优化能源交易,从而更好地预测价格波动。大数据可以基于1000个不同的数据集针对能源市场做出几乎实时的复杂分析。随着能源价格的波动,能够基于这1000个不同的数据源进行价格预测是相当有价值的。对于能源供应和需求的预测,能够帮助能源销售机构获利。通过对市场的充分了解,他们可以保护自己免受能源价格波动的影响。最后,他们将能够提供更便宜的能源,提高客户满意度。
未来的投资和维护
来自网络的大量传感器的数据信息可以提供关于网络质量的附加信息。它可以帮助能源企业确定未来的投资是否是必要的,或是需要进行维护。不必进行定期的网络检查,大数据工具可以用来实时的监控网络设备,只在必要时采取相关的措施。这将为能源企业节省很多不必要的调查,预防费用。同样,这些信息还将有助于了解哪些投资能够帮助能源企业获得最大的投资回报。
例如,Vattenfall公司在风力涡轮机内安装了传感器数据,以预测何时需要进行维护。这将为该公司节省了很多不必要的检查涡轮机时所需要的直升机费用和其他维护费用,以及昂贵的咨询费用。
大数据也可以被用来改善风力涡轮机的安置位置,以便获得最佳的能量输出。在微观和宏观层面,对不断变化的天气进行预测可以帮助企业选择最佳的风力涡轮机安置地点。或者根据地区年度日照情况数据来选择太阳能系统的安置地点。结合结构化和非结构化数据,如潮汐、地理空间、传感器数据、卫星图像、森林砍伐地图和天气模型也可以帮助确定最佳安置地点。
例如,丹麦能源公司维斯塔斯风力系统利用IBM大数据分析解决方案来分析许多不同的数据集,以确定每台风力涡轮机的最佳安置地点。将风轮机安置在错误的地方会导致无法生产出足够的电力,无法判断风能投资的投资回报率,也就增加了电力成本。
大数据应用在能源领域最重要的影响是,其将使得现有的能源网络变得更高效。这将帮助我们减少能源消耗量,并降低消费者的购买价格。智能能源管理可以防止电网超载运行,并防止新的和昂贵的电厂建设需求。较少的电厂能够提供更高效率的能源和更低的价格,影响我们的碳排量。所以,最终,大数据有可能变成比采用可再生能源更可持续的技术,以帮助我们减少碳排量。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15