
python数据结构之链表详解
数据结构是计算机科学必须掌握的一门学问,之前很多的教材都是用C语言实现链表,因为c有指针,可以很方便的控制内存,很方便就实现链表,其他的语言,则没那么方便,有很多都是用模拟链表,不过这次,我不是用模拟链表来实现,因为python是动态语言,可以直接把对象赋值给新的变量。
好了,在说我用python实现前,先简单说说链表吧。在我们存储一大波数据时,我们很多时候是使用数组,但是当我们执行插入操作的时候就是非常麻烦,看下面的例子,有一堆数据1,2,3,5,6,7我们要在3和5之间插入4,如果用数组,我们会怎么做?当然是将5之后的数据往后退一位,然后再插入4,这样非常麻烦,但是如果用链表,我就直接在3和5之间插入4就行,听着就很方便。
那么链表的结构是怎么样的呢?顾名思义,链表当然像锁链一样,由一节节节点连在一起,组成一条数据链。
链表的节点的结构如下:
data为自定义的数据,next为下一个节点的地址。
链表的结构为,head保存首位节点的地址:
接下来我们来用python实现链表
python实现链表
首先,定义节点类Node:
class Node:
'''
data: 节点保存的数据
_next: 保存下一个节点对象
'''
def __init__(self, data, pnext=None):
self.data = data
self._next = pnext
def __repr__(self):
'''
用来定义Node的字符输出,
print为输出data
'''
return str(self.data)
然后,定义链表类:
链表要包括:
属性:
链表头:head
链表长度:length
方法:
判断是否为空: isEmpty()
def isEmpty(self):
return (self.length == 0
增加一个节点(在链表尾添加): append()
def append(self, dataOrNode):
item = None
if isinstance(dataOrNode, Node):
item = dataOrNode
else:
item = Node(dataOrNode)
if not self.head:
self.head = item
self.length += 1
else:
node = self.head
while node._next:
node = node._next
node._next = item
self.length += 1
删除一个节点: delete()
#删除一个节点之后记得要把链表长度减一
def delete(self, index):
if self.isEmpty():
print "this chain table is empty."
return
if index < 0 or index >= self.length:
print 'error: out of index'
return
#要注意删除第一个节点的情况
#如果有空的头节点就不用这样
#但是我不喜欢弄头节点
if index == 0:
self.head = self.head._next
self.length -= 1
return
#prev为保存前导节点
#node为保存当前节点
#当j与index相等时就
#相当于找到要删除的节点
j = 0
node = self.head
prev = self.head
while node._next and j < index:
prev = node
node = node._next
j += 1
if j == index:
prev._next = node._next
self.length -= 1
修改一个节点: update()
def update(self, index, data):
if self.isEmpty() or index < 0 or index >= self.length:
print 'error: out of index'
return
j = 0
node = self.head
while node._next and j < index:
node = node._next
j += 1
if j == index:
node.data = data
查找一个节点: getItem()
def getItem(self, index):
if self.isEmpty() or index < 0 or index >= self.length:
print "error: out of index"
return
j = 0
node = self.head
while node._next and j < index:
node = node._next
j += 1
return node.data
查找一个节点的索引: getIndex()
def getIndex(self, data):
j = 0
if self.isEmpty():
print "this chain table is empty"
return
node = self.head
while node:
if node.data == data:
return j
node = node._next
j += 1
if j == self.length:
print "%s not found" % str(data)
return
插入一个节点: insert()
def insert(self, index, dataOrNode):
if self.isEmpty():
print "this chain tabale is empty"
return
if index < 0 or index >= self.length:
print "error: out of index"
return
item = None
if isinstance(dataOrNode, Node):
item = dataOrNode
else:
item = Node(dataOrNode)
if index == 0:
item._next = self.head
self.head = item
self.length += 1
return
j = 0
node = self.head
prev = self.head
while node._next and j < index:
prev = node
node = node._next
j += 1
if j == index:
item._next = node
prev._next = item
self.length += 1
清空链表: clear()
def clear(self):
self.head = None
self.length = 0
以上就是链表类的要实现的方法。
执行的结果:
接下来是完整代码:# -*- coding:utf8 -*-
#/usr/bin/env python
class Node(object):
def __init__(self, data, pnext = None):
self.data = data
self._next = pnext
def __repr__(self):
return str(self.data)
class ChainTable(object):
def __init__(self):
self.head = None
self.length = 0
def isEmpty(self):
return (self.length == 0)
def append(self, dataOrNode):
item = None
if isinstance(dataOrNode, Node):
item = dataOrNode
else:
item = Node(dataOrNode)
if not self.head:
self.head = item
self.length += 1
else:
node = self.head
while node._next:
node = node._next
node._next = item
self.length += 1
def delete(self, index):
if self.isEmpty():
print "this chain table is empty."
return
if index < 0 or index >= self.length:
print 'error: out of index'
return
if index == 0:
self.head = self.head._next
self.length -= 1
return
j = 0
node = self.head
prev = self.head
while node._next and j < index:
prev = node
node = node._next
j += 1
if j == index:
prev._next = node._next
self.length -= 1
def insert(self, index, dataOrNode):
if self.isEmpty():
print "this chain tabale is empty"
return
if index < 0 or index >= self.length:
print "error: out of index"
return
item = None
if isinstance(dataOrNode, Node):
item = dataOrNode
else:
item = Node(dataOrNode)
if index == 0:
item._next = self.head
self.head = item
self.length += 1
return
j = 0
node = self.head
prev = self.head
while node._next and j < index:
prev = node
node = node._next
j += 1
if j == index:
item._next = node
prev._next = item
self.length += 1
def update(self, index, data):
if self.isEmpty() or index < 0 or index >= self.length:
print 'error: out of index'
return
j = 0
node = self.head
while node._next and j < index:
node = node._next
j += 1
if j == index:
node.data = data
def getItem(self, index):
if self.isEmpty() or index < 0 or index >= self.length:
print "error: out of index"
return
j = 0
node = self.head
while node._next and j < index:
node = node._next
j += 1
return node.data
def getIndex(self, data):
j = 0
if self.isEmpty():
print "this chain table is empty"
return
node = self.head
while node:
if node.data == data:
return j
node = node._next
j += 1
if j == self.length:
print "%s not found" % str(data)
return
def clear(self):
self.head = None
self.length = 0
def __repr__(self):
if self.isEmpty():
return "empty chain table"
node = self.head
nlist = ''
while node:
nlist += str(node.data) + ' '
node = node._next
return nlist
def __getitem__(self, ind):
if self.isEmpty() or ind < 0 or ind >= self.length:
print "error: out of index"
return
return self.getItem(ind)
def __setitem__(self, ind, val):
if self.isEmpty() or ind < 0 or ind >= self.length:
print "error: out of index"
return
self.update(ind, val)
def __len__(self):
return self.length
以上就是本文的全部内容,希望对大家的学习有所帮助
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-29t 检验与 Wilcoxon 检验:数据差异分析的两大核心方法 在数据分析的广阔领域中,判断两组或多组数据之间是否存在显著差异是一项 ...
2025-07-29PowerBI 添加索引列全攻略 在使用 PowerBI 进行数据处理与分析时,添加索引列是一项极为实用的操作技巧。索引列能为数据表中的每 ...
2025-07-29CDA 数据分析师必备技能全解析 在数据驱动决策的时代,CDA 数据分析师作为连接数据与业务价值的桥梁,需要具备多元化的技能体系 ...
2025-07-29解析 LSTM 训练后输出不确定:成因与破解之道 在深度学习处理序列数据的领域,长短期记忆网络(LSTM)凭借其捕捉长距离依赖关系 ...
2025-07-29χ² 检验与 t 检验:数据差异分析的两大核心工具 在统计学的方法论体系中,假设检验是验证数据规律、判断差异显著性的核心手段 ...
2025-07-29