京公网安备 11010802034615号
经营许可证编号:京B2-20210330
为何大数据比不上好直觉
大数据是一笔大生意。感应器、GPS跟踪、数学建模和人工智能给企业带来了大规模的实时市场洞察力,为监控、定位、衡量员工和顾客开辟了史无前例的新方法。分析公司高德纳(Gartner)预计,采用大数据技术的公司将“在所有可测的财务指标上超过竞争者20%。”
大数据可能是“新的石油”,但我要提醒大家,不要把它当作一个新的信仰来崇拜。身处数据洪流之中,我们不仅失去了对商业的大局观,还失去了部分人性。如果我们认为更好的生活就等同于更好的算法,还能留下多少创新空间?
我不是有数据恐惧症,我担忧的是纯粹依靠数据。我不反对定量的测量方法,但我质疑它们作为商业表现、社会繁荣和生活意义等重要指标的共识性。

大数据有许多好处,不过我们还需要用“大直觉”来完善它。以下是六大理由:
大数据=老大哥?《纽约时报》(New York
Times)的史蒂夫?洛尔把大数据看作美国管理学家泰勒的“科学管理”的传承。泰勒主义的核心是业绩表现,而如今我们开始衡量快乐感和幸福感、消费偏好、社交关系、体育活动、态度、情绪、情感、行为和身体机能——换句话说,我们在评测自己的生活。
当然,某种程度上说,“量化自身”的应用程序能让人们更好地控制自己的决定。然而,如此一来,我们就在自我改善这一想法的驱使下,把曾经私密的领域开放给了商业世界。
大数据不具有社会性。人类是社会动物。研究显示,人与人之间的关系,尤其是友谊与婚姻,是快乐和自我实现的关键因素。我们的大脑有着关心的本能,我们的心脏和思想有着领会同类并与他们产生共鸣的惊人能力。我们能表现出同情,感受到情绪波动,察觉到非语言的细微暗示,容忍或拥抱,接受与拒绝,爱与痛,体会到我们所有的感受,做出不合理的举动,丧失自制力。这些人性的关键特质受到了里昂?维瑟提尔所称的“主观数字化”的威胁。
最近的社会基因研究显示,数字过载不仅降低了我们的生产力,还削弱了我们进化出的与他人交流的能力。
大数据造成小世界。道德感通过共鸣而增强。矛盾的是,在这个高度连接的时代,我们越来越需要面对一个挑战:与想法、价值观、信仰、信念和文化相异的人们交流。数字技术可以根据我们的偏好,为我们定制线上和线下的社交活动,我们越来越沉浸在自己的世界中——正如艾利?帕雷瑟所说的“过滤泡泡”。它通过智能算法,向我们提供熟悉的内容、文化和同伴,同时把这些东西直接砸入我们的舒适地带。我们不“赞”与我们不同的人和事物,陷入了社会和文化上狭隘的恶性循环。
大数据让我们更智能,而不是更有智慧。我们这个数据驱动的世界不仅变得更小,还变得更快。信息的实时传递促使我们不断地立刻做出回应。道格拉斯?洛西科夫打趣阿尔文?托夫勒1970年的着作《未来冲击》(Future
Shock)的书名,将我们现在的状态称为“现时冲击”(Present
Shock),他哀叹,“一切不是发生在当下的事情日益遭到漠视,而一切被认为是发生在当下的事情又让人应接不暇。”
数据可以迅速为我们提供信息,不过要快速做出意义深远的决定,直觉是更好的工具。普拉萨德?凯帕和纳威?拉裘在最近的一本书中力劝商界领袖进行“从智能到智慧”的转变。他们的意见很中肯。拥有智能的公司和领袖依靠持续的反馈成长起来。智能很快,智慧却很慢。拥有智慧的公司和领袖需要时间来实现转变。
大数据(过于)明显。“你只能管理你所测量到的”——真的吗?金融危机已经证明我们对于所测量的事物管理得很失败。失败的兼并、失败的产品发布、信誉危机、社交媒体的灾难,这一切都证明,我们需要更好地管理那些我们无法测量的事物。
正如设计界的思想家罗杰?马丁所言,领袖需要“兼听则明”。评价21世纪的商界领袖,不再看他/她能排除多少不确定性,而要看他/她能忍受多少不确定性。
大数据不敌直觉力。数据也许能预测新问题,也许能找到已知问题的新解决办法,不过只有人类的直觉和巧妙心思才能提出开创性的新想法。这是独一无二的人类天赋——它远远超过解决一个问题,超过满足某个功能需求的层次。
同样的,如果我们量化所有的人际关系,就无法给人类的判断力留下任何回旋余地。因为我们常常把对人们的感觉和他们的行为混合在一起,我们的判断力比二进制数字更加复杂。它意味着我们可以对双重行为有着更细微的评估和反应,我们可以选择将失败视为创新的先决条件。很难想象,如果我们丧失原谅的能力,如何还能朝着任何目标前进。
让我们抵抗冲向数据的欲望,花时间沉住气,必要时再加快步伐。让我们允许自己不时从数据中解脱出来,去思考什么才是真正重要的东西。让我们用数据来讲述自己故事,但不要让数据成为我们唯一的故事。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01