
大数据杀熟:无关技术,关乎伦理
同样的商品或服务,老客户看到的价格反而比新客户要贵出许多,这在互联网行业被叫作“大数据杀熟”。调查发现,在机票、酒店、电影、电商、出行等多个价格有波动的平台都存在类似情况,且在线旅游平台较为普遍。在一些网站,大V在客服投诉等方面甚至享有特权。同时,还存在同一位用户在不同网站的数据被共享这一问题,许多用户遇到过在一个网站搜索或浏览的内容立刻被另一网站进行广告推荐的情况。
“大数据杀熟”是一个新近才“热”起来的词,不过这一现象或已经持续多年。有信息表示,国外有些网站早就有之;而近日有媒体对2008名受访者进行的一项调查显示,51.3%的受访者遇到过互联网企业利用大数据“杀熟”的情况。
和任何新事物都会存在不同看法一样。“大数据杀熟”到底该如何定性,目前也面临着争议。如上述调查中,59.2%的受访者指出大数据面前信息严重不对称,消费者处于弱势;59.1%的受访者希望价格主管部门进一步立法规范互联网企业歧视性定价行为。另外,也有专家表示,这一价格机制较为普遍,针对大数据下价格敏感人群,系统会自动提供更加优惠的策略,算是可以接受的动态定价。
但搁置其具体应如何定性的争议,“大数据杀熟”所表现出来的现象和逻辑,其中存在的问题还是基本可以确定的。
首先,“大数据杀熟”,固然可以说是商家的定价策略,但最终形成的所谓“最懂你的人伤你最深”的局面,确实与人们习以为常的生活经验和固有的商业伦理形成了一种可见的冲突。比如,一些在线商家和网站标明新客户享有专属优惠,这从吸引新客户的角度,完全可以理解。可在这一优惠政策的另一端,如果老客户普遍要支付高于“正常价格”的金额,甚至越是老客户价格越贵,这显然背离了一种朴素的诚信原则,也是对老客户信赖的一种直接辜负。由此可能引发的对文明商业伦理的扭曲,应该警惕。
有专家表示,与其称这种现象为“杀熟”,不若说是“杀对价格不敏感的人”。举例说明:一听可乐,在超市只卖2元,而在五星级酒店能卖出30元——这不能叫价格歧视,而是因为你能住得起五星级酒店住,那么你就是要被“杀”的。该案例在现实中已被普遍接受。但套用在“大数据杀熟”上却并不恰当。其中一个关键问题便是,一听可乐的正常价格是非常透明的,五星级酒店的溢价在很大程度上是公开溢价。但“大数据杀熟”,却处于隐蔽状态,多数消费者其实是在“不知情”的情况下“被溢价”了。且将老顾客等同于“对价格不敏感的人”也有偷换概念之嫌。
其次,有声音将“大数据杀熟”归咎为“大数据精准靶向坑人”,也是找错了“靶子”。本质上说,大数据技术并无原罪,由此所衍生的“杀熟”,归根结底不过是一种商业套路。这一定价“潜规则”,正是依据大数据所形成的用户画像和消费习惯进行精准溢价,但反过来说,它也可以对老顾客实行精准优惠。所以,不必将“大数据杀熟”视为大数据发展的必然现象。真正要担心的,是这一现象可能给大数据的发展制造污名效应。
“大数据杀熟”,到底是不是价格歧视、是否违背了相关法律,或者说,需不需要进一步完善法律对这一现象加以明确限制,这些也值得讨论。但不管最终如何定性,技术如何进步,一个诚信、透明、公平的市场交易环境抑或对应的市场伦理——无论是线下还是线上,都应该是一个成熟的商业社会所应该追求和呵护的。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15