Python中多线程及程序锁浅析
Python中多线程使用到Threading模块。Threading模块中用到的主要的类是Thread,我们先来写一个简单的多线程代码:
class MyThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
def run(self):
global n
print n
n += 1
if "__main__" == __name__:
n = 0
ThreadList = []
for i in range(0, 10):
t = MyThread()
ThreadList.append(t)
for t in ThreadList:
t.start()
for t in ThreadList:
t.join
最普通的一个多线程小例子。我一笔带过地讲一讲,我创建了一个继承Thread类的子类MyThread,作为我们的线程启动类。按照规定,重写Thread的run方法,我们的线程启动起来后会自动调用该方法。于是我首先创建了10个线程,并将其加入列表中。再使用一个for循环,开启每个线程。在使用一个for循环,调用join方法等待所有线程结束才退出主线程。
这段代码看似简单,但实际上隐藏着一个很大的问题,只是在这里没有体现出来。你真的以为我创建了10个线程,并按顺序调用了这10个线程,每个线程为n增加了1.实际上,有可能是A线程执行了n++,再C线程执行了n++,再B线程执行n++。
这里涉及到一个“锁”的问题,如果有多个线程同时操作一个对象,如果没有很好地保护该对象,会造成程序结果的不可预期(比如我们在每个线程的run方法中加入一个time.sleep(1),并同时输出线程名称,则我们会发现,输出会乱七八糟。因为可能我们的一个print语句只打印出一半的字符,这个线程就被暂停,执行另一个去了,所以我们看到的结果很乱),这种现象叫做“线程不安全”:
于是,Threading模块为我们提供了一个类,Threading.Lock,锁。我们创建一个该类对象,在线程函数执行前,“抢占”该锁,执行完成后,“释放”该锁,则我们确保了每次只有一个线程占有该锁。这时候对一个公共的对象进行操作,则不会发生线程不安全的现象了。
于是,我们把代码更改如下:
class MyThread(threading.Thread):
def __init__(self):
threading.Thread.__init__(self)
def run(self):
global n, lock
time.sleep(1)
if lock.acquire():
print n , self.name
n += 1
lock.release()
if "__main__" == __name__:
n = 1
ThreadList = []
lock = threading.Lock()
for i in range(1, 200):
t = MyThread()
ThreadList.append(t)
for t in ThreadList:
t.start()
for t in ThreadList:
t.join()
最后执行结果:
我们看到,我们先建立了一个threading.Lock类对象lock,在run方法里,我们使用lock.acquire()获得了这个锁。此时,其他的线程就无法再获得该锁了,他们就会阻塞在“if lock.acquire()”这里,直到锁被另一个线程释放:lock.release()。
所以,if语句中的内容就是一块完整的代码,不会再存在执行了一半就暂停去执行别的线程的情况。所以最后结果是整齐的。
就如同在java中,我们使用synchronized关键字修饰一个方法,目的一样,让某段代码被一个线程执行时,不会打断跳到另一个线程中。
这是多线程占用一个公共对象时候的情况。如果多个线程要调用多个现象,而A线程调用A锁占用了A对象,B线程调用了B锁占用了B对象,A线程不能调用B对象,B线程不能调用A对象,于是一直等待。这就造成了线程“死锁”。
Threading模块中,也有一个类,RLock,称之为可重入锁。该锁对象内部维护着一个Lock和一个counter对象。counter对象记录了acquire的次数,使得资源可以被多次require。最后,当所有RLock被release后,其他线程才能获取资源。在同一个线程中,RLock.acquire可以被多次调用,利用该特性,可以解决部分死锁问题。
死锁问题很复杂,多年来人们想出了很多算法来解决它。我就不再多说,具体还是要大家参阅帮助文档。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析在当今信息时代发挥着重要作用。单因素方差分析(One-Way ANOVA)是一种关键的统计方法,用于比较三个或更多独立样本组 ...
2025-04-25CDA持证人简介: 居瑜 ,CDA一级持证人国企财务经理,13年财务管理运营经验,在数据分析就业和实践经验方面有着丰富的积累和经 ...
2025-04-25在当今数字化时代,数据分析师的重要性与日俱增。但许多人在踏上这条职业道路时,往往充满疑惑: 如何成为一名数据分析师?成为 ...
2025-04-24以下的文章内容来源于刘静老师的专栏,如果您想阅读专栏《刘静:10大业务分析模型突破业务瓶颈》,点击下方链接 https://edu.cda ...
2025-04-23大咖简介: 刘凯,CDA大咖汇特邀讲师,DAMA中国分会理事,香港金管局特聘数据管理专家,拥有丰富的行业经验。本文将从数据要素 ...
2025-04-22CDA持证人简介 刘伟,美国 NAU 大学计算机信息技术硕士, CDA数据分析师三级持证人,现任职于江苏宝应农商银行数据治理岗。 学 ...
2025-04-21持证人简介:贺渲雯 ,CDA 数据分析师一级持证人,互联网行业数据分析师 今天我将为大家带来一个关于用户私域用户质量数据分析 ...
2025-04-18一、CDA持证人介绍 在数字化浪潮席卷商业领域的当下,数据分析已成为企业发展的关键驱动力。为助力大家深入了解数据分析在电商行 ...
2025-04-17CDA持证人简介:居瑜 ,CDA一级持证人,国企财务经理,13年财务管理运营经验,在数据分析实践方面积累了丰富的行业经验。 一、 ...
2025-04-16持证人简介: CDA持证人刘凌峰,CDA L1持证人,微软认证讲师(MCT)金山办公最有价值专家(KVP),工信部高级项目管理师,拥有 ...
2025-04-15持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。在实际生活中,我们可能会 ...
2025-04-14在 Python 编程学习与实践中,Anaconda 是一款极为重要的工具。它作为一个开源的 Python 发行版本,集成了众多常用的科学计算库 ...
2025-04-14随着大数据时代的深入发展,数据运营成为企业不可或缺的岗位之一。这个职位的核心是通过收集、整理和分析数据,帮助企业做出科 ...
2025-04-11持证人简介:CDA持证人黄葛英,ICF国际教练联盟认证教练,前字节跳动销售主管,拥有丰富的行业经验。 本次分享我将以教培行业为 ...
2025-04-11近日《2025中国城市长租市场发展蓝皮书》(下称《蓝皮书》)正式发布。《蓝皮书》指出,当前我国城市住房正经历从“增量扩张”向 ...
2025-04-10在数字化时代的浪潮中,数据已经成为企业决策和运营的核心。每一位客户,每一次交易,都承载着丰富的信息和价值。 如何在海量客 ...
2025-04-09数据是数字化的基础。随着工业4.0的推进,企业生产运作过程中的在线数据变得更加丰富;而互联网、新零售等C端应用的丰富多彩,产 ...
2025-04-094月7日,美国关税政策对全球金融市场的冲击仍在肆虐,周一亚市早盘,美股股指、原油期货、加密货币、贵金属等资产齐齐重挫,市场 ...
2025-04-08背景 3月26日,科技圈迎来一则重磅消息,苹果公司宣布向浙江大学捐赠 3000 万元人民币,用于支持编程教育。 这一举措并非偶然, ...
2025-04-07在当今数据驱动的时代,数据分析能力备受青睐,数据分析能力频繁出现在岗位需求的描述中,不分岗位的任职要求中,会特意标出“熟 ...
2025-04-03