
SQL中的左外连接和+号的用法
Oracle 左连接、右连接、全外连接、(+)号作用
Oracle 外连接
(1)左外连接 (左边的表不加限制)
(2)右外连接(右边的表不加限制)
(3)全外连接(左右两表都不加限制)
外连接(Outer Join)
outer join则会返回每个满足第一个(顶端)输入与第二个(底端)输入的联接的行。它还返回任何在第二个输入中没有匹配行的第一个输入中的行。外连接分为三种: 左外连接,右外连接,全外连接。 对应SQL:LEFT/RIGHT/FULL OUTER JOIN。 通常我们省略outer 这个关键字。 写成:LEFT/RIGHT/FULL JOIN。
在左外连接和右外连接时都会以一张表为基表,该表的内容会全部显示,然后加上两张表匹配的内容。 如果基表的数据在另一张表没有记录。 那么在相关联的结果集行中列显示为空值(NULL)。
对于外连接, 也可以使用“(+) ”来表示。 关于使用(+)的一些注意事项:
1.(+)操作符只能出现在where子句中,并且不能与outer join语法同时使用。
2. 当使用(+)操作符执行外连接时,如果在where子句中包含有多个条件,则必须在所有条件中都包含(+)操作符
3.(+)操作符只适用于列,而不能用在表达式上。
4.(+)操作符不能与or和in操作符一起使用。
5.(+)操作符只能用于实现左外连接和右外连接,而不能用于实现完全外连接。
在做实验之前,我们先将dave表和bl里加一些不同的数据。 以方便测试。
SQL> select * from bl;
ID NAME
---------- ----------
1 dave
2 bl
3 big bird
4 exc
9 怀宁
SQL> select * from dave;
ID NAME
---------- ----------
8 安庆
1 dave
2 bl
1 bl
2 dave
3 dba
4 sf-express
5 dmm
2.1 左外连接(Left outer join/ left join)
left join是以左表的记录为基础的,示例中Dave可以看成左表,BL可以看成右表,它的结果集是Dave表中的数据,在加上Dave表和BL表匹配的数据。换句话说,左表(Dave)的记录将会全部表示出来,而右表(BL)只会显示符合搜索条件的记录。BL表记录不足的地方均为NULL.
示例:
SQL> select * from dave a left join bl b on a.id = b.id;
ID NAME ID NAME
--------- ---------- ---------- ----------
1 bl 1 dave
1 dave 1 dave
2 dave 2 bl
2 bl 2 bl
3 dba 3 big bird
4 sf-express 4 exc
5 dmm -- 此处B表为null,因为没有匹配到
8 安庆 -- 此处B表为null,因为没有匹配到
SQL> select * from dave a left outer join bl b on a.id = b.id;
ID NAME ID NAME
---------- ---------- ---------- ----------
1 bl 1 dave
1 dave 1 dave
2 dave 2 bl
2 bl 2 bl
3 dba 3 big bird
4 sf-express 4 exc
5 dmm
8 安庆
用(+)来实现, 这个+号可以这样来理解: + 表示补充,即哪个表有加号,这个表就是匹配表。所以加号写在右表,左表就是全部显示,故是左连接。
SQL> Select * from dave a,bl b where a.id=b.id(+); -- 注意: 用(+) 就要用关键字where
ID NAME ID NAME
---------- ---------- ---------- ----------
1 bl 1 dave
1 dave 1 dave
2 dave 2 bl
2 bl 2 bl
3 dba 3 big bird
4 sf-express 4 exc
5 dmm
8 安庆
2.2 右外连接(right outer join/ right join)
和left join的结果刚好相反,是以右表(BL)为基础的, 显示BL表的所以记录,在加上Dave和BL 匹配的结果。 Dave表不足的地方用NULL填充.
示例:
SQL> select * from dave a right join bl b on a.id = b.id;
ID NAME ID NAME
---------- ---------- ---------- ----------
1 dave 1 dave
2 bl 2 bl
1 bl 1 dave
2 dave 2 bl
3 dba 3 big bird
4 sf-express 4 exc
9 怀宁 --此处左表不足用Null 填充
已选择7行。
SQL> select * from dave a right outer join bl b on a.id = b.id;
ID NAME ID NAME
---------- ---------- ---------- ----------
1 dave 1 dave
2 bl 2 bl
1 bl 1 dave
2 dave 2 bl
3 dba 3 big bird
4 sf-express 4 exc
9 怀宁 --此处左表不足用Null 填充
已选择7行。
用(+)来实现, 这个+号可以这样来理解: + 表示补充,即哪个表有加号,这个表就是匹配表。所以加号写在左表,右表就是全部显示,故是右连接。
SQL> Select * from dave a,bl b where a.id(+)=b.id;
ID NAME ID NAME
---------- ---------- ---------- ----------
1 dave 1 dave
2 bl 2 bl
1 bl 1 dave
2 dave 2 bl
3 dba 3 big bird
4 sf-express 4 exc
9 怀宁
2.3 全外连接(full outer join/ full join)
左表和右表都不做限制,所有的记录都显示,两表不足的地方用null 填充。 全外连接不支持(+)这种写法。
示例:
SQL> select * from dave a full join bl b on a.id = b.id;
ID NAME ID NAME
---------- ---------- ---------- ----------
8 安庆
1 dave 1 dave
2 bl 2 bl
1 bl 1 dave
2 dave 2 bl
3 dba 3 big bird
4 sf-express 4 exc
5 dmm
9 怀宁
已选择9行。
SQL> select * from dave a full outer join bl b on a.id = b.id;
ID NAME ID NAME
---------- ---------- ---------- ----------
8 安庆
1 dave 1 dave
2 bl 2 bl
1 bl 1 dave
2 dave 2 bl
3 dba 3 big bird
4 sf-express 4 exc
5 dmm
最初由 ghc_x 发布
[B]有两个表T1和T2,两个表除了主键索引外均无其他索引,这两个表由T1.F1(主键),T2.F2(主键)进行左连接,SQL语句有两种写法:
1. SELECT * FROM T1,T2 WHERE T1.F1=T2.F2(+)
2. SELECT * FROM T1 LEFT JOIN T2 ON T1.F1=T2.F2
当查看1的执行计划时发现T1为全表扫描,T2为索引扫描。
当查看2的执行计划时发现两个表均为全表扫描。
有人知道这是为什么吗? [/B]
我一直以来也是认为这两种写法是一样的,没想到楼主特意去看了它们的执行计划,而且发现了它们的不同,这使得我比较惊讶。
按照书上的讲法,这两种写法是没有什么区别的,后一种写法只不过是前一种写法的新版本。
为什么两者的执行计划会不一样呢?
我仔细看了一下两者的执行计划,发现了为什么后一种要两个表都全表 扫描,而前一个表有一个索引扫描。
原来前者选择的优化器是RULE,而后者选择的优化器是CBO的ALL ROWS。
不过,似乎要后者的效率高。
1. SELECT /*+RULE*/ * FROM T1,T2 WHERE T1.F1=T2.F2(+)
2. SELECT /*+RULE*/ * FROM T1 LEFT JOIN T2 ON T1.F1=T2.F2
这样再看下执行计划吧
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Power BI 热力地图制作指南:从数据准备到实战分析 在数据可视化领域,热力地图凭借 “直观呈现数据密度与分布趋势” 的核心优势 ...
2025-08-20PyTorch 矩阵运算加速库:从原理到实践的全面解析 在深度学习领域,矩阵运算堪称 “计算基石”。无论是卷积神经网络(CNN)中的 ...
2025-08-20数据建模:CDA 数据分析师的核心驱动力 在数字经济浪潮中,数据已成为企业决策的核心资产。CDA(Certified Data Analyst)数据分 ...
2025-08-20KS 曲线不光滑:模型评估的隐形陷阱,从原因到破局的全指南 在分类模型(如风控违约预测、电商用户流失预警、医疗疾病诊断)的评 ...
2025-08-20偏态分布:揭开数据背后的非对称真相,赋能精准决策 在数据分析的世界里,“正态分布” 常被视为 “理想模型”—— 数据围绕均值 ...
2025-08-19CDA 数据分析师:数字化时代的价值创造者与决策智囊 在数据洪流席卷全球的今天,“数据驱动” 已从企业战略口号落地为核心 ...
2025-08-19CDA 数据分析师:善用 Power BI 索引列,提升数据处理与分析效率 在 Power BI 数据分析流程中,“数据准备” 是决定后续分析质量 ...
2025-08-18CDA 数据分析师:巧用 SQL 多个聚合函数,解锁数据多维洞察 在企业数据分析场景中,单一维度的统计(如 “总销售额”“用户总数 ...
2025-08-18CDA 数据分析师:驾驭表格结构数据的核心角色与实践应用 在企业日常数据存储与分析场景中,表格结构数据(如 Excel 表格、数据库 ...
2025-08-18PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12