
R语言中的vector(向量),array(数组)总结
对于那些有一点编程经验的人来说,vector,matrix,array,list,data.frame就相当于编程语言中的容器,因为只是将R看做数据处理工具所以它们的底层是靠什么实现的,内存怎么处理的具体也不要深究。
R语言很奇怪的是它是面向对象的语言,所以经常会调用系统的方法,而且更奇怪的是总是调用“谓语”的方法,用起来像是写句子一样,记起来真是让人费解。比如is.vector(),read.table(),as.vector()、、
直接开始吧:(由于习惯,大部分用"="代替"<-")
一、向量vector,
1.是最基本的数据容器,里面的数据必须是同一类型,先看基本用法:
a<-c(1,2,3,4,5,6,7,8,9)
或者赋值函数assign,
assign("a",c(1,2,3,4,5,6,7,8,9))
> is.vector(a)
[1] TRUE
> is.matrix(a)
[1] FALSE
> is.array(a)
[1] FALSE
> is.list(a)
[1] FALSE
或者利用随机分布函数,rnrom(n,mean,sd),runif(n,min,max)、、、
> b=runif(20,min=1,max=20)
> b
[1] 2.181016 18.417605 9.748379 2.122849 1.281871 4.099617
[7] 14.162348 18.034863 7.464664 9.599227 18.973259 1.900773
[13] 8.995223 11.048916 11.667131 3.859275 17.992988 1.089552
[19] 13.490061 12.864029
或者按照一定的步长:
> a=seq(1,20,by=3)
> a
[1] 1 4 7 10 13 16 19
或者重复:
> s=rep(a,times=3)
> s
[1] 1 4 7 10 13 16 19 1 4 7 10 13 16 19 1 4 7 10 13 16 19
逻辑向量:
> b=a>8;b
[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE
缺失数据用大写NA表示,数据不确定用NaN表示,数据是无穷用Inf表示(一会全大写,一会大写加小写,一会首字母大写,真是醉了),判断是否为空数据用函数is.na(),判断是否不确定用函数is.nan(),数据是否有限用is.finite(),数据是否为无穷用函数is.infinite():
> z=c(1:3,Na);z
Error: object 'Na' not found
> z=c(1:3,NA);z
[1] 1 2 3 NA
> is.na(z)
[1] FALSE FALSE FALSE TRUE
将缺失的数据赋值为0:
> z[is.na(z)]=0;z
[1] 1 2 3 0
下面将这几个有问题的数据放在一个向量中:
> z=c(0/1,0/0,1/0,NA);z
[1] 0 NaN Inf NA
> is.na(z)
[1] FALSE TRUE FALSE TRUE
> is.nan(z)
[1] FALSE TRUE FALSE FALSE
> is.finite(z)
[1] TRUE FALSE FALSE FALSE
> is.infinite(z)
[1] FALSE FALSE TRUE FALSE
2.vector中元素的下标引用.
> a=round(runif(9,min=1,max=9))
> a
[1] 3 8 8 8 2 7 3 5 3
可以看见,与容器不同,vector的下标是从1开始的:
> a[0]
numeric(0)
> a[1]
[1] 3
选取第2和第3个数,引用非常方便:
> a[c(2,3)]
[1] 8 8
引用除了第一个值的所有数,用了减号"-":
> a[-c[1]]
[1] 8 8 8 2 7 3 5 3
3.vector作为R语言工具,需要了解vector的各种运算。
①+-×÷,其他运算如log,exp,cos,sqrt等也相似。其意义是对应的向量的每个元素分别做运算,
> x=c(1,2,3)
> y=c(2,3,4)
> z=2*x+y-1
> z
[1] 3 6 9
> x^2
[1] 1 4 9
> cos(x)
[1] 0.5403023 -0.4161468 -0.9899925
> sqrt(x)
[1] 1.000000 1.414214 1.732051
②与向量有关的函数,min(x),max(x), sum(x),range(x),太简单就不在细说,需要强调的是which.min(x),这个还是蛮重要的。
> a=rnorm(10,mean=5,sd=2)
> a
[1] 5.914559 2.604346 5.342572 9.006863 6.547221 7.519781 7.330211
[8] 8.322956 6.875491 5.883626
> which.max(a)
[1] 4
> which.min(a)
[1] 2
> a[which.max(a)]
[1] 9.006863
> a[which.min(a)]
[1] 2.604346
其他的如sd(a),var(a),length(a),sort(a),分别是求方差,标准差,长度,排序。与python不同R语言的vector所有操作都不会改变vector本身的值。
4.由于R是一种基于对象的语言,R的对象分为单纯对象和复合对象两种,单纯对象的所有元素都是同一数据类型(数值、字符串),元素不再是对象。复合对象的元素可是是不同的类型,每个元素是一个对象。
R的对象都有两个基本的属性:mode和length,向量的类型为:logical(逻辑型)、numeric(数值型)、complex(复数型)、character(字符型)。
> b=c(0:9)
> b
[1] 0 1 2 3 4 5 6 7 8 9
> is.numeric(b)
[1] TRUE
> is.character(b)
[1] FALSE
> c=as.character(b)
> c
[1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"
> is.numeric(c)
[1] FALSE
> is.character(c)
[1] TRUE
二、数组array:多维的同一类型集合(字符型、数值型、逻辑型、复数型),R可以很容易地生成和处理数组,特别是矩阵matrix是一个二维数组。
1.可以通过定义dim(维度)将向量变成matrix。
a=c(1,3,4,5,6,7,8,9,3)
> dim(a)=c(3,3)
> a
[,1] [,2] [,3]
[1,] 1 5 8
[2,] 3 6 9
[3,] 4 7 3
或者:
> a=array(a,dim=c(3,3))
> a
[,1] [,2] [,3]
[1,] 1 5 8
[2,] 3 6 9
[3,] 4 7 3
或者:
> a=matrix(a,nrow=3,ncol=3);a
[,1] [,2] [,3]
[1,] 1 5 8
[2,] 3 6 9
[3,] 4 7 3
> is.vector(a)
[1] FALSE
> is.matrix(a)
[1] TRUE
> is.array(a)
[1] TRUE
> is.list(a)
[1] FALSE
可以发现,a已经通过定义维度将其变成了一个矩阵(matrix)和数组(array),下面将讲matrix其实是一个二维的array。
2.下标引用
> a=c(1:24)
> dim(a)=c(2,3,4)
> a[2,1,2]
[1] 8
> a[1,2:3,2:3]
[,1] [,2]
[1,] 9 15
[2,] 11 17
> a[1, , ]
[,1] [,2] [,3] [,4]
[1,] 1 7 13 19
[2,] 3 9 15 21
[3,] 5 11 17 23
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15