
R语言中的vector(向量),array(数组)总结
对于那些有一点编程经验的人来说,vector,matrix,array,list,data.frame就相当于编程语言中的容器,因为只是将R看做数据处理工具所以它们的底层是靠什么实现的,内存怎么处理的具体也不要深究。
R语言很奇怪的是它是面向对象的语言,所以经常会调用系统的方法,而且更奇怪的是总是调用“谓语”的方法,用起来像是写句子一样,记起来真是让人费解。比如is.vector(),read.table(),as.vector()、、
直接开始吧:(由于习惯,大部分用"="代替"<-")
一、向量vector,
1.是最基本的数据容器,里面的数据必须是同一类型,先看基本用法:
a<-c(1,2,3,4,5,6,7,8,9)
或者赋值函数assign,
assign("a",c(1,2,3,4,5,6,7,8,9))
> is.vector(a)
[1] TRUE
> is.matrix(a)
[1] FALSE
> is.array(a)
[1] FALSE
> is.list(a)
[1] FALSE
或者利用随机分布函数,rnrom(n,mean,sd),runif(n,min,max)、、、
> b=runif(20,min=1,max=20)
> b
[1] 2.181016 18.417605 9.748379 2.122849 1.281871 4.099617
[7] 14.162348 18.034863 7.464664 9.599227 18.973259 1.900773
[13] 8.995223 11.048916 11.667131 3.859275 17.992988 1.089552
[19] 13.490061 12.864029
或者按照一定的步长:
> a=seq(1,20,by=3)
> a
[1] 1 4 7 10 13 16 19
或者重复:
> s=rep(a,times=3)
> s
[1] 1 4 7 10 13 16 19 1 4 7 10 13 16 19 1 4 7 10 13 16 19
逻辑向量:
> b=a>8;b
[1] FALSE FALSE FALSE TRUE TRUE TRUE TRUE
缺失数据用大写NA表示,数据不确定用NaN表示,数据是无穷用Inf表示(一会全大写,一会大写加小写,一会首字母大写,真是醉了),判断是否为空数据用函数is.na(),判断是否不确定用函数is.nan(),数据是否有限用is.finite(),数据是否为无穷用函数is.infinite():
> z=c(1:3,Na);z
Error: object 'Na' not found
> z=c(1:3,NA);z
[1] 1 2 3 NA
> is.na(z)
[1] FALSE FALSE FALSE TRUE
将缺失的数据赋值为0:
> z[is.na(z)]=0;z
[1] 1 2 3 0
下面将这几个有问题的数据放在一个向量中:
> z=c(0/1,0/0,1/0,NA);z
[1] 0 NaN Inf NA
> is.na(z)
[1] FALSE TRUE FALSE TRUE
> is.nan(z)
[1] FALSE TRUE FALSE FALSE
> is.finite(z)
[1] TRUE FALSE FALSE FALSE
> is.infinite(z)
[1] FALSE FALSE TRUE FALSE
2.vector中元素的下标引用.
> a=round(runif(9,min=1,max=9))
> a
[1] 3 8 8 8 2 7 3 5 3
可以看见,与容器不同,vector的下标是从1开始的:
> a[0]
numeric(0)
> a[1]
[1] 3
选取第2和第3个数,引用非常方便:
> a[c(2,3)]
[1] 8 8
引用除了第一个值的所有数,用了减号"-":
> a[-c[1]]
[1] 8 8 8 2 7 3 5 3
3.vector作为R语言工具,需要了解vector的各种运算。
①+-×÷,其他运算如log,exp,cos,sqrt等也相似。其意义是对应的向量的每个元素分别做运算,
> x=c(1,2,3)
> y=c(2,3,4)
> z=2*x+y-1
> z
[1] 3 6 9
> x^2
[1] 1 4 9
> cos(x)
[1] 0.5403023 -0.4161468 -0.9899925
> sqrt(x)
[1] 1.000000 1.414214 1.732051
②与向量有关的函数,min(x),max(x), sum(x),range(x),太简单就不在细说,需要强调的是which.min(x),这个还是蛮重要的。
> a=rnorm(10,mean=5,sd=2)
> a
[1] 5.914559 2.604346 5.342572 9.006863 6.547221 7.519781 7.330211
[8] 8.322956 6.875491 5.883626
> which.max(a)
[1] 4
> which.min(a)
[1] 2
> a[which.max(a)]
[1] 9.006863
> a[which.min(a)]
[1] 2.604346
其他的如sd(a),var(a),length(a),sort(a),分别是求方差,标准差,长度,排序。与python不同R语言的vector所有操作都不会改变vector本身的值。
4.由于R是一种基于对象的语言,R的对象分为单纯对象和复合对象两种,单纯对象的所有元素都是同一数据类型(数值、字符串),元素不再是对象。复合对象的元素可是是不同的类型,每个元素是一个对象。
R的对象都有两个基本的属性:mode和length,向量的类型为:logical(逻辑型)、numeric(数值型)、complex(复数型)、character(字符型)。
> b=c(0:9)
> b
[1] 0 1 2 3 4 5 6 7 8 9
> is.numeric(b)
[1] TRUE
> is.character(b)
[1] FALSE
> c=as.character(b)
> c
[1] "0" "1" "2" "3" "4" "5" "6" "7" "8" "9"
> is.numeric(c)
[1] FALSE
> is.character(c)
[1] TRUE
二、数组array:多维的同一类型集合(字符型、数值型、逻辑型、复数型),R可以很容易地生成和处理数组,特别是矩阵matrix是一个二维数组。
1.可以通过定义dim(维度)将向量变成matrix。
a=c(1,3,4,5,6,7,8,9,3)
> dim(a)=c(3,3)
> a
[,1] [,2] [,3]
[1,] 1 5 8
[2,] 3 6 9
[3,] 4 7 3
或者:
> a=array(a,dim=c(3,3))
> a
[,1] [,2] [,3]
[1,] 1 5 8
[2,] 3 6 9
[3,] 4 7 3
或者:
> a=matrix(a,nrow=3,ncol=3);a
[,1] [,2] [,3]
[1,] 1 5 8
[2,] 3 6 9
[3,] 4 7 3
> is.vector(a)
[1] FALSE
> is.matrix(a)
[1] TRUE
> is.array(a)
[1] TRUE
> is.list(a)
[1] FALSE
可以发现,a已经通过定义维度将其变成了一个矩阵(matrix)和数组(array),下面将讲matrix其实是一个二维的array。
2.下标引用
> a=c(1:24)
> dim(a)=c(2,3,4)
> a[2,1,2]
[1] 8
> a[1,2:3,2:3]
[,1] [,2]
[1,] 9 15
[2,] 11 17
> a[1, , ]
[,1] [,2] [,3] [,4]
[1,] 1 7 13 19
[2,] 3 9 15 21
[3,] 5 11 17 23
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18