京公网安备 11010802034615号
经营许可证编号:京B2-20210330
R语言实现金融数据的时间序列分析及建模
一 移动平均
移动平均能消除数据中的季节变动和不规则变动。若序列中存在周期变动,则通常以周期为移动平均项数。移动平均法可以通过数据显示出数据长期趋势的变动规律。
R可用filter()函数做移动平均。用法:filter(data,filter,sides)

1、简单移动平均
简单移动平均就是将n个观测值的平均数作为第(n+1)/2个的拟合值。当n为偶数时,需进行二次移动平均。简单移动平均假设序列长期趋势的斜率不变。
以我国1992到2014年的季度GDP数据为例。
data<-read.csv("gdpq.csv")
tdata<-ts(data,start=1992,freq=4)
m1<-filter(tdata,filter=c(rep(1/4,4)))
plot(tdata,xlab="时间",ylab="gdp")
lines(m1,col="red",cex=1.5)

代码运行结果如上图,红色表示拟合值,黑色表示真实值。
2、二次移动平均
二次移动平均即在一次移动平均的基础上再进行一次移动平均。一般两次移动平均的项数是一致的。二次移动平均假设序列长期趋势的斜率是随时间的变化而变化的。
二次移动平均长期趋势的拟合公式为:at=2M1t−M2t,其中M1t 表示第一次移动平均的拟合值,M2t表示二次移动平均的拟合值。
同样以上述数据为例,进行二次移动平均。代码如下:
plot(tdata,type="l",xlab="时间",ylab="季度GDP")
m2<-filter(m1,filter=c(rep(1/4,4)),sides=1)
lines(2*m1-m2,col="red",cex=2)
代码运行结果如上图所示,红色为二次移动的拟合值。
二 指数平滑
指数平滑的思想与移动平均是一样的,只是随着时间间隔的增加,加权的权重会呈指数衰减。它认为时间间隔越远的数据对当期数据的影响越小。R调用的函数为
HoltWinters(data, alpha=, beta=, gamma=,seasonal=c(“additive”,”multiple”)…)

1、简单指数平滑
简单指数平滑假设序列中不存在季节变动和系统的趋势变化。模型公式为:
Xt=axt+(1−a)Xt−1,0<a<1
a为平滑系数,Xt 为拟合值,xt 为真实值。一般指定X0=x1 ,并且a越大,平滑程度越弱。R语言中有函数可以通过最小化一步预测误差平方和的方法估计出a。以2010年到2014年消费者新心指数为例,并预测2015年前6个月的值。代码如下:
> data<-read.csv("consumer_cf.csv")
> newdata<-ts(data[,2],start=c(2010,1),freq=12)
> plot(newdata,type="o",cex.axis=1.5,cex.lab=1.5,
+ xlab="时间",ylab="消费者信心指数")
> a<-HoltWinters(newdata,beta=F,gamma=F)
> b<-HoltWinters(newdata,alpha=0.5,beta=F,gamma=F) #估计参数a
> b
Holt-Winters exponential smoothing without trend and without seasonal component.
Call:
HoltWinters(x = newdata, alpha = 0.5, beta = F, gamma = F)
Smoothing parameters:
alpha: 0.5
beta : FALSE
gamma: FALSE
Coefficients:
[,1]
a 105.2898
> pdata<-predict(a,6,prediction.interval = T)
> plot(a,pdata,type="o",xlab="时间",ylab="消费者信心指数")
代码运行结果如上所示。用HoltWinters()函数估计出来的a=0.78,且向后预测值为图中红色部分,黑色为真实值。这种预测方法预测出的值往往不够精确,因为它没有考虑序列中存在的其他变动。
2、Holt_Winters指数平滑
Holt_Winters指数平滑考虑了序列中存在的季节变动,这种方法对存在季节变动的经济数据有较好的拟合效果,可以用来进行向后预测。
加法季节模型:
Xt=a∗(xt−st)+(1−a)(at−1+bt−1
bt=β∗(Xt−Xt−1)+(1−β)bt−1
st=γ∗(xt−Xt)+(1−γ)st−p
其中p为季节变动的周期长度。其他含义同上。以上述的GDP数据为例,用HoltWinters指数平滑法分解GDP的水平,斜率及季节变动水平,并预测未来5年的值。代码如下:
> data<-read.csv("gdpq.csv")
> tdata<-ts(data,start=1992,freq=4)
> gdp.hw<-HoltWinters(tdata,seasonal="multi")
> plot(gdp.hw$fitted,type="o",main="分解图")
> plot(gdp.hw,type="o")
> pdata<-predict(gdp.hw,n.ahead=4*5)
> pdata
Qtr1 Qtr2 Qtr3 Qtr4
2015 149826.6 168126.7 176640.3 192627.9
2016 161252.4 180708.2 189616.2 206523.1
2017 172678.2 193289.7 202592.1 220418.2
2018 184104.1 205871.2 215568.0 234313.4
2019 195529.9 218452.8 228543.8 248208.5
> ts.plot(tdata,pdata,type="o",lty=1:2,col=c("red","black"))



代码中采用了加法模型。序列的分解图如上图所示。第二个图为模型对数据的拟合图,第三个图的虚线部分为后5年的预测。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05