
“大数据”其实质是以冗杂多元化的海量数据为基础,结合“大数法则”和“大概率事件”理念,进行相关性、非精准的预测和目标探索。与事件式营销、清单精准销售等商业领域常见数据挖掘方式不同,“大数据”更具前瞻性、普适性。可以说,“大数据”既是一种分析手段,也是一种思维方式。在虚拟经济、网络生活日益丰富的今天,不难预见,“大数据”势必引发生活、工作与思维的大变革。
“云计算”还未走下神坛,“大数据”便已汹涌来袭,从马云[微博]的卸任演讲到《大数据时代》的热销,再到“大数据营销”、“大数据分析”、“大数据挖掘”等热词红极一时,“大数据”一夜间倍受世人瞩目。
然而,就当今中国信息化发展水平而言,论述“大数据”理念主导市场行为、引领时代潮流为时尚早。
首先,信息化基础薄弱。相较发达国家,我国尚处于电子化进程阶段,虽然PC技术、网络通讯日渐成熟,但规范化管理、集成式应用不足。同时,各行业信息化水平参差不齐,金融、通信、商贸领域水平较高,民生、行政、生产领域相对滞后。
其次,数据共享环境亟待完善。一是数据量庞大但标准化不足。各领域数据规格、统计口径、信息维度、存储方式等大相径庭,致使数据的跨行业应用难以形成规模。二是法律与监管环境尚不完善。在我国个人隐私的私密性保护、数据使用者的责权认定、信息共享环节的事权划分、流通与应用环节的监管等都处于探索阶段,跨行业的大数据分析尚且游走在法律边缘。
最后,非精准模式“逐利”性不强,原动力不足。当前,数据挖掘、行为分析、清单式管理等精准销售模式已经在网络购物、信息通讯等领域广泛应用,因其数据源要求单一、挖掘模型相对简单且因果性强,短期内仍将是各类商业机构的应用主体。而依靠海量数据相关性分析而产生的预测或目标,对数据基础要求高、过程复杂、见效相对缓慢,商业机构对“大数据”的应用往往是雷声大雨点小。
如果说发达国家处于“大数据”时代的早期,我国则尚处于“大数据”的探索期。必须从数据基础、数据管控、数据治理、数据处理、数据应用等维度做好前瞻性筹备,才能顺应时代潮流,紧随“大数据”时代步伐。
首先,提高社会信息化水平。按照国家“十二五”规划的信息化建设目标,重点关注经济、社会、政务、文化和军事领域的信息化建设。同时,着力提高信息的标准化水平。规范结构性数据采集,广泛积累沉淀非结构性数据,适时开展数据质量治理,提高信息的标准化程度。
其次,健全法律和监管机制。一方面,要丰富和完善法律法规,重点解决个人隐私保护、数据使用责权、反数据垄断等问题,使数据和信息的使用有法可依、有规可循。另一方面,应确立监管部门,完善监管机制、建立数据共享体系、执行数据管控职责。
最后,着力发展专业化的“大数据”行业。与美国拥有farecast、ITA
Software等公司不同,我国在“大数据”分析咨询领域尚属空白,“大数据”运行体系孕育着巨大的市场潜能。一是数据的采集与存储。境外分析机构多以互联网搜索、商业贸易、社交通讯为主体,未来百度[微博]、淘宝、腾讯等行业代表在数据源采集方面将大有可为。二是数据的分析与应用。“大数据”的商业价值毋庸置疑,竞争激烈和有着较高行为分析性需求的消费、民生、金融、行政领域必将成为“大数据”探索的先驱者。三是“大数据”的专业化创新。一方面,要加强信息处理、模型分析、数据应用方面的专业人才储备,培养懂得市场、了解数据、会用工具的综合型人才,由关注信息向关注技术转变。另一方面,大数据分析不仅是个人才华的展示,更是团队智慧的体现,思维创新型公司作为跨行业数据分析的专业机构,可以为商业部门提供专业咨询和可行性方案,深入探索“大数据”领域的行业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01