京公网安备 11010802034615号
经营许可证编号:京B2-20210330
“大数据”其实质是以冗杂多元化的海量数据为基础,结合“大数法则”和“大概率事件”理念,进行相关性、非精准的预测和目标探索。与事件式营销、清单精准销售等商业领域常见数据挖掘方式不同,“大数据”更具前瞻性、普适性。可以说,“大数据”既是一种分析手段,也是一种思维方式。在虚拟经济、网络生活日益丰富的今天,不难预见,“大数据”势必引发生活、工作与思维的大变革。
“云计算”还未走下神坛,“大数据”便已汹涌来袭,从马云[微博]的卸任演讲到《大数据时代》的热销,再到“大数据营销”、“大数据分析”、“大数据挖掘”等热词红极一时,“大数据”一夜间倍受世人瞩目。
然而,就当今中国信息化发展水平而言,论述“大数据”理念主导市场行为、引领时代潮流为时尚早。
首先,信息化基础薄弱。相较发达国家,我国尚处于电子化进程阶段,虽然PC技术、网络通讯日渐成熟,但规范化管理、集成式应用不足。同时,各行业信息化水平参差不齐,金融、通信、商贸领域水平较高,民生、行政、生产领域相对滞后。
其次,数据共享环境亟待完善。一是数据量庞大但标准化不足。各领域数据规格、统计口径、信息维度、存储方式等大相径庭,致使数据的跨行业应用难以形成规模。二是法律与监管环境尚不完善。在我国个人隐私的私密性保护、数据使用者的责权认定、信息共享环节的事权划分、流通与应用环节的监管等都处于探索阶段,跨行业的大数据分析尚且游走在法律边缘。
最后,非精准模式“逐利”性不强,原动力不足。当前,数据挖掘、行为分析、清单式管理等精准销售模式已经在网络购物、信息通讯等领域广泛应用,因其数据源要求单一、挖掘模型相对简单且因果性强,短期内仍将是各类商业机构的应用主体。而依靠海量数据相关性分析而产生的预测或目标,对数据基础要求高、过程复杂、见效相对缓慢,商业机构对“大数据”的应用往往是雷声大雨点小。
如果说发达国家处于“大数据”时代的早期,我国则尚处于“大数据”的探索期。必须从数据基础、数据管控、数据治理、数据处理、数据应用等维度做好前瞻性筹备,才能顺应时代潮流,紧随“大数据”时代步伐。
首先,提高社会信息化水平。按照国家“十二五”规划的信息化建设目标,重点关注经济、社会、政务、文化和军事领域的信息化建设。同时,着力提高信息的标准化水平。规范结构性数据采集,广泛积累沉淀非结构性数据,适时开展数据质量治理,提高信息的标准化程度。
其次,健全法律和监管机制。一方面,要丰富和完善法律法规,重点解决个人隐私保护、数据使用责权、反数据垄断等问题,使数据和信息的使用有法可依、有规可循。另一方面,应确立监管部门,完善监管机制、建立数据共享体系、执行数据管控职责。
最后,着力发展专业化的“大数据”行业。与美国拥有farecast、ITA
Software等公司不同,我国在“大数据”分析咨询领域尚属空白,“大数据”运行体系孕育着巨大的市场潜能。一是数据的采集与存储。境外分析机构多以互联网搜索、商业贸易、社交通讯为主体,未来百度[微博]、淘宝、腾讯等行业代表在数据源采集方面将大有可为。二是数据的分析与应用。“大数据”的商业价值毋庸置疑,竞争激烈和有着较高行为分析性需求的消费、民生、金融、行政领域必将成为“大数据”探索的先驱者。三是“大数据”的专业化创新。一方面,要加强信息处理、模型分析、数据应用方面的专业人才储备,培养懂得市场、了解数据、会用工具的综合型人才,由关注信息向关注技术转变。另一方面,大数据分析不仅是个人才华的展示,更是团队智慧的体现,思维创新型公司作为跨行业数据分析的专业机构,可以为商业部门提供专业咨询和可行性方案,深入探索“大数据”领域的行业价值。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20