
Google机器学习零基础在线课程发布,免费!附中文版
新的学习资源来了!刚刚,谷歌上线了人工智能学习网站 Learn with Google AI,并推出了机器学习在线课程,免费!而且还有中文版!
传送门:
“机器学习速成课程”中文版:
https://developers.google.com/machine-learning/crash-course/
Learn with Google AI:
https://ai.google/education
这个课程名为“机器学习速成课程” (简称MLCC) ,定位为机器学习热爱者的自学指南。
本来这是谷歌的内部课程,最初旨在帮助谷歌员工建立对人工智能和机器学习基本原理的快速认知,目前已有18,000名员工参加。
现在,谷歌终于允许这个课程“飞进寻常百姓家”。
课程总体时长大约15个小时,包含25节互动式课程、Google研究人员的讲座、40多项练习、实际案例研究等,还可以以互动方式直观呈现算法的实际运用。
为了展现课程全貌,我们将目录展示如下:
目录
简介
目标
前提条件和准备工作
机器学习概念
机器学习简介(3分钟)
框架处理(15 分钟)
深入了解机器学习(20 分钟)
降低损失(60 分钟)
使用 TF 的基本步骤(60 分钟)
泛化(15 分钟)
训练集和测试集(25 分钟)
验证(40 分钟)
表示法(65 分钟)
特征组合(70 分钟)
正则化:简单性(40 分钟)
逻辑回归(20 分钟)
分类(90 分钟)
正则化:稀疏性(45 分钟)
神经网络简介(55 分钟)
训练神经网络(40 分钟)
多类别神经网络(50 分钟)
嵌入(80 分钟)
机器学习工程
生产环境机器学习系统(3分钟)
静态训练与动态训练(7 分钟)
静态推理与动态推理(7 分钟)
数据依赖关系(14 分钟)
机器学习现实世界应用示例
癌症预测(5 分钟)
18 世纪文学(5 分钟)
现实世界应用准则(2 分钟)
总结
后续步骤
课程可以教会你什么?
官网显示,该课程将解答如下问题:
学习前的准备工作
看到这里,你是不是跃跃欲试、摩拳擦掌呢?别急,虽然谷歌表示,这门速成课程是为机器学习零基础的新手设计的,但是为了能够理解课程中介绍的概念并完成练习,需要参与者掌握入门级的代数知识;熟练掌握编程基础并具有一些使用Python进行编码的经验。
在准备工作中,课程还要求学习者对 Pandas 有所了解,因为机器学习速成课程中的编程练习使用 Pandas 库来操控数据集。
同时需要你了解低阶的 TensorFlow 基础知识,因为速成课程中的编程练习使用 TensorFlow 的高阶 tf.estimator API 来配置模型。
对于需要用到的主要概念和工具,谷歌也做了系统的罗列,很多概念都有超链接来进行解释,但可惜的是很多超链过去的网站都是英文,看来英文还是不能还给老师啊。
课程学习
准备工作完成后,就可以参照目录进行按部就班的学习了。
课程提供包括英语、西班牙语、法语、韩语和简体中文在内的多种版本,可以从网页左下角的下拉列表中选择语言。
值得一提的是,视频讲座的配音是使用机器学习技术生成的。营长在试听后发现,虽然机器的味道还很重,但并不影响理解,视频上方还有“发送反馈”的设置,点击后可以提交错误报告和建议,协助谷歌改进配音技术。
学习效果的检验
除了教学视频和文章,在每一小节结束后,课程都还附有检验学习效果的小题目。
比如在第一节框架处理的学习结束后的题目是这样的:
在你选择完成后,系统会告诉参与者为什么是对的,为什么是错的:
当然也有编程练习,比如:
谷歌为什么这么做?
半个月前,一年一度的 MIT 十大突破性技术评选揭晓,“AI 大众化”位列其中,评选机构认为其突破性在于基于云的 AI 技术使得 AI 更加便宜且易于使用。
自从公司战略从 Mobile first 转变为 AI first 以来,Google 就不遗余力地推行人工智能的大众化,其中就包括像 TensorFlow 以及更有趣的一些项目,比如 Doodles等,这些实验旨在以更实用的方式展示 AI。
尽管如此,很多公司依然缺乏足够多会使用 AI 的人才,“人工智能人才缺口数百万”这样的报道也屡屡被朋友圈刷屏,所以谷歌正试图让更多的人能够通过 Learn with Google AI 来一起了解这个领域,并将人工智能和机器学习的人才汇聚起来,供他们了解机器学习核心概念、开发技巧以及应用其解决一些实际问题。
机器学习速成课程 (简称MLCC) 是谷歌的第一个课程计划,相信日后谷歌会上线更多的课程和资源。
祝大家学习愉快!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02