京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Google机器学习零基础在线课程发布,免费!附中文版
新的学习资源来了!刚刚,谷歌上线了人工智能学习网站 Learn with Google AI,并推出了机器学习在线课程,免费!而且还有中文版!
传送门:
“机器学习速成课程”中文版:
https://developers.google.com/machine-learning/crash-course/
Learn with Google AI:
https://ai.google/education
这个课程名为“机器学习速成课程” (简称MLCC) ,定位为机器学习热爱者的自学指南。
本来这是谷歌的内部课程,最初旨在帮助谷歌员工建立对人工智能和机器学习基本原理的快速认知,目前已有18,000名员工参加。
现在,谷歌终于允许这个课程“飞进寻常百姓家”。
课程总体时长大约15个小时,包含25节互动式课程、Google研究人员的讲座、40多项练习、实际案例研究等,还可以以互动方式直观呈现算法的实际运用。
为了展现课程全貌,我们将目录展示如下:
目录
简介
目标
前提条件和准备工作
机器学习概念
机器学习简介(3分钟)
框架处理(15 分钟)
深入了解机器学习(20 分钟)
降低损失(60 分钟)
使用 TF 的基本步骤(60 分钟)
泛化(15 分钟)
训练集和测试集(25 分钟)
验证(40 分钟)
表示法(65 分钟)
特征组合(70 分钟)
正则化:简单性(40 分钟)
逻辑回归(20 分钟)
分类(90 分钟)
正则化:稀疏性(45 分钟)
神经网络简介(55 分钟)
训练神经网络(40 分钟)
多类别神经网络(50 分钟)
嵌入(80 分钟)
机器学习工程
生产环境机器学习系统(3分钟)
静态训练与动态训练(7 分钟)
静态推理与动态推理(7 分钟)
数据依赖关系(14 分钟)
机器学习现实世界应用示例
癌症预测(5 分钟)
18 世纪文学(5 分钟)
现实世界应用准则(2 分钟)
总结
后续步骤
课程可以教会你什么?
官网显示,该课程将解答如下问题:
学习前的准备工作
看到这里,你是不是跃跃欲试、摩拳擦掌呢?别急,虽然谷歌表示,这门速成课程是为机器学习零基础的新手设计的,但是为了能够理解课程中介绍的概念并完成练习,需要参与者掌握入门级的代数知识;熟练掌握编程基础并具有一些使用Python进行编码的经验。
在准备工作中,课程还要求学习者对 Pandas 有所了解,因为机器学习速成课程中的编程练习使用 Pandas 库来操控数据集。
同时需要你了解低阶的 TensorFlow 基础知识,因为速成课程中的编程练习使用 TensorFlow 的高阶 tf.estimator API 来配置模型。
对于需要用到的主要概念和工具,谷歌也做了系统的罗列,很多概念都有超链接来进行解释,但可惜的是很多超链过去的网站都是英文,看来英文还是不能还给老师啊。
课程学习
准备工作完成后,就可以参照目录进行按部就班的学习了。
课程提供包括英语、西班牙语、法语、韩语和简体中文在内的多种版本,可以从网页左下角的下拉列表中选择语言。
值得一提的是,视频讲座的配音是使用机器学习技术生成的。营长在试听后发现,虽然机器的味道还很重,但并不影响理解,视频上方还有“发送反馈”的设置,点击后可以提交错误报告和建议,协助谷歌改进配音技术。
学习效果的检验
除了教学视频和文章,在每一小节结束后,课程都还附有检验学习效果的小题目。
比如在第一节框架处理的学习结束后的题目是这样的:
在你选择完成后,系统会告诉参与者为什么是对的,为什么是错的:
当然也有编程练习,比如:
谷歌为什么这么做?
半个月前,一年一度的 MIT 十大突破性技术评选揭晓,“AI 大众化”位列其中,评选机构认为其突破性在于基于云的 AI 技术使得 AI 更加便宜且易于使用。
自从公司战略从 Mobile first 转变为 AI first 以来,Google 就不遗余力地推行人工智能的大众化,其中就包括像 TensorFlow 以及更有趣的一些项目,比如 Doodles等,这些实验旨在以更实用的方式展示 AI。
尽管如此,很多公司依然缺乏足够多会使用 AI 的人才,“人工智能人才缺口数百万”这样的报道也屡屡被朋友圈刷屏,所以谷歌正试图让更多的人能够通过 Learn with Google AI 来一起了解这个领域,并将人工智能和机器学习的人才汇聚起来,供他们了解机器学习核心概念、开发技巧以及应用其解决一些实际问题。
机器学习速成课程 (简称MLCC) 是谷歌的第一个课程计划,相信日后谷歌会上线更多的课程和资源。
祝大家学习愉快!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16