京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Spss中非参数检验的两个独立样本检验
Spss中非参数检验中两个独立样本检验中四个复选项的区别和适用范围
可以先数据-选择个案
1.Mann-Whitney U: 主要用于判别两个独立样本所属的总体是否有相同的分布;
2. Kolmogorov-Smirnov Z: 推测两个样本是否来自具有相同分布的总体;
3. Moses extreme reactions:检验两个独立样本之观察值的散布范围是否有差异存在,以检验两个样本是否来自具有同一分布的总体;
4. Wald-Wolfowitz runs: 考察两个独立样本是否来自具有相同分布的总体。
1.Mann-Whitney U检验(又简称M-W检验),注重对分布的中心位置(平均水平)作检验,实际是检验H0:两样本所对应的总体具有相同的中心位置(中位数),属位置参数检验,而不管两总体分布的形状如何,因此通常假定两总体分布的形状相同,只有在这个前提下的中心位置相同才能说是两总体分布相同或两样本来自相同总体;若不能明确两总体分布的形状是否相同,则不宜单独使用此方法作分析了事,应同时作K-S检验或W-W检验,并对全部结果作综合分析。因为此方法与目前国内通用教材中的Wilcoxon
Rank Sum检验法完全等价,故在结果中一并给出〔1〕。小样本时应读取精确概率作结论。
2.Kolmogorov-Smirnov Z检验(又简称K-S检验)是上述提到的Kolmogorov检验用于两个独立样本的情形,对全貌作检验。如果结论是两总体分布不相同,此方法尚不足以说明是位置不同、变异程度不同还是偏度不同,这是报告结果时应注意的。结果中的Z也是渐近统计量,大样本时α=0.05和α=0.01的界值分别是1.36和1.63,小样本时应读取结果中两个经验分布函数的最大差值查界值表作结论,不可直接利用结果中的P值作结论。
3.Wald-Wolfowitz
runs检验 (又简称W-W检验)与K-S检验相似,也是对全貌作检验,但其功效不如后者;此方法实为Runs过程用于分析两个独立样本的情形。与K-S检验类似,如果结论是两总体分布不相同,此方法尚不足以说明是位置不同、变异程度不同还是偏度不同,报告结果时也应注意。若两样本有相同观察值,结果中提供最大和最小游程个数以及相应的P值,当依此两P值所作的结论相矛盾时,须计算平均游程个数,然后查表作结论或用正态近似法作检验。此过程自动地根据样本大小给出确切概率或正态近似法的结果。
4.Moses Test of Extreme Reactions 检验注重于对分布范围(变异程度)作检验,实际是检验H0:两样本所对应的总体具有相同的分布范围。要求样本足够大。笔者尚未见到在医学领域中使用此方法的例子。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16