京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据中心扮演多重角色
从我们查阅电子邮件或下载音乐及应用程序;到使用政府机构的在线服务或从云中访问商业应用程序,数据中心始终在我们与信息技术互动的过程中扮演着相当重要的驱动角色。

在过去的几年里,数据中心行业经历了迅速的发展,以便与不断变化的用户期望保持一致。在企业内部,现代数据中心的管理其实扮演的是一种不断满足新的商业机会对快速响应的需求和管理现有的基础设施成本之间的持续平衡的角色。所以,选择一款合适的基础设施平台,对于成功的IT企业同时满足上述两方面的需求而言是至关重要的。
云计算也是席卷数据中心行业的一个巨大的潮流。很多企业都转向云式的数据中心部署,以便能够快速的部署新的服务,并巩固和加强现有的基础设施投资,以实现最佳的投资回报。专为云计算基础设施设计的平台较之传统的独立服务器、网络和存储,能够加速帮助企业实现业绩。
实施成功的云基础设施需要更加先进的数据中心技术,如更快的广域网络、功能强大的服务器、巨大的存储容量和普遍部署的高性能虚拟化。其要求实现一个端到端的技术愿景。
成千上万的客户均转向选择那些可以提供一个集中的企业数据中心组合设计的供应商。这种组合设计围绕着硬件和软件设计工作相结合的原则。这样,这些客户可以期待实现更加优化的企业堆栈,进而帮助企业降低风险、提供领先的性能,并简化部署和管理。在当今世界上,硬件与软件的密切兼容合作能够为该行业带来无与伦比的性能表现。
降低风险并保护投资
一些企业已经使用创新技术,在一定程度上较之同行业中的其他企业享有了无与伦比的投资保护了。今天,有超过50000家的企业和机构运行着超过11000款经过认证的应用技术。将他们现有的基础设施转移到最新的操作系统和硬件平台的过程已然通过二进制兼容性和灵活的虚拟化技术相结合的方法而大大简化了。
虚拟化和云计算已经成为一种增强企业灵活性并支撑日益增长的业务需求的手段,对于新的IT服务来说显得越来越重要。许多企业已经部署基于x86服务器虚拟化的IT基础设施,以充分利用低成本和开放的体系结构的优势,使得他们可以方便自如的选择供应商的软件组件,如操作系统、虚拟化软件、管理工具。
虽然许多企业已经进行了一定程度的整合和虚拟化,但其实他们往往还可以通过扩大到更多的IT基础设施,以潜在的受益。整合和虚拟化提供一系列的优点,同时还有助于企业实现云计算所带来的额外的节约成本和灵活性的改进。
从台式机到数据中心虚拟化的投资回报率的提升
单靠整合所提供的虚拟化,就可以带来成本和运营效益。而通过使整个企业共享IT资源,虚拟化可以大大提高利用水平,显着提高投资回报率。
虚拟化是数据中心用于优化资源的关键技术。随着IT需求得持续发展,虚拟化将不再被视为一个孤立的技术来解决一个问题。许多公司已经开始利用服务器虚拟化、整合系统和减少资本支出(CAPEX)以实现优化。企业IT工作人员现在的任务是提供按需服务,数据中心虚拟化的需求已经远远超越了简单的整合和减少资本支出。
大规模整合的性能、可扩展性和灵活性
为了能够有效地整合,新的系统必须具有相关的性能、容量安全性和可扩展性,以达到预期的性能水平,支持目标应用程序,甚至满足应用程序随着时间的推移的改变。
利用私有云就绪平台简化IT
企业关键任务的云计算必须结合敏捷性、灵活性和安全性的规模和性能,例如OracleSolaris就满足最苛刻的企业云所需的所有属性。内置虚拟化,易于部署的应用程序,满足工作负载移动性的基本要求。更重要的是,实现对这些功能的控制,必须利用大型的计算和存储资源池。达到相关的合规性要求,便于监测和报告,同样是必要的。
随着软件和硬件不断的经过兼容性设计和测试,整个系统管理得到了大大简化。增强了性能和可用性,同时降低了成本和部署时间。这种独特的能力为供应商们带来了一个额外的优势,他们可以同时对自己的软件和硬件产品进行设计、测试、包装、认证、部署和升级。
对于一些企业来说,推进到下一代数据中心将涉及到需要将业务内容从传统的应用程序和平台中转移到更符合成本效益的IT环境。我们的目标是通过将他们转化为现代语言、数据库和服务来保留现有的应用程序资产。
通过将您企业的数据中心的目标设定为高可用性,并减少列复杂性,并降低您企业的整体成本,您的企业的数据中心将被改造成一个能够跟踪处理当下的挑战,并满足企业业务增长需求,充分利用优势机会的数据中心。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15