
数据处理危机的表现
数据规划作为一种理论和实践方法,是20世纪80年代由美国管理与信息化专家詹姆斯·马丁在其专著《信息工程》中提出的,并在另一专著《总体数据规划方法论》中详加论述的。詹姆斯·马丁提出的数据规划的直接动因,是为了解决当时在计算机应用领域普遍出现的“数据处理危机问题”。
数据处理危机的表现
1.失败案例很多
一家大保险公司用3年的时间,花费了400万美元,开发了公司的计算机信息系统,为了推广应用,还抽调了不少业务人员参加培训学习,可是到头来不得不因系统不适用而放弃。美国国防部开发了10个自动化系统,1977年的研究表明,这10个系统都存在着要修改的问题,而这种修改耗资巨大。
两家航空公司指控计算机应用系统研制人员,因为他们花费4000万美元研制的软件实际上不好用。欧洲一家银行花费7000万美元开发的应用程序,美国空军花费3亿美元开发的指挥系统软件,都没有收到预期的效果。
这些失败的案例说明,正确的开发使用计算机,可以扩大人脑的才智,使管理人员从繁重的数字工作中解放出来;而不正确的开发使用计算机,则会出现前所未有的灾难,其后果不堪设想。在企业高层领导中时常出现对IT部门的不满情绪,认为他们花费了大量的人力、物力、财力和时间用于计算机系统的应用开发,但是收益甚微。例如,一家拥有昂贵的、世界一流的计算机网络系统的大公司总经理伤心的说,多年来他一直要求每天或者起码每周给他一份资金平衡数据,但是看来他所需要的信息是无指望了。
2.应用积压严重
在大多数注重管理的企业中,新的应用需求的增长速度要比IT部门所能提供的服务快得多,这种需求不平衡性日趋严重。
另一方面,无用的或效率很低的应用程序越积越多,即形成“应用积压”问题。长期的积压使IT部门尽快满足最终用户需求无能为力;许多用户需要的很有价值的应用项目,却因IT部门的负担过重而不能及时开发。IT部门负责人和工作人员承受着双重压力。
3.应用开发的低效率
随着计算机的普及,最终用户使用计算机的知识不断增加,对高效率开发各种应用软件的需求日益迫切,但是系统分析和程序设计工作太慢了,程序设计不能停留在手工劳动密集型的阶段。要自动化的完成这种工作,需要信息系统分析与设计的新方法。例如,要把汽车制造从个体手工生产方式变为大工业生产方式,需要建立一种真正的挤出结构。对于信息系统的自动化建设来说,也是同样的道理。这种必要的基础结构的建立,需要一定的时间和资金,但是这并不比早期系统的手工开发方法和维护所耗费的时间长、费用多。
4.系统维护的困难
数据处理和软件开发工作,由于所谓的维护问题而变得更糟。使用“维护”这个术语,是指的旧程序要重写,以适应新的需要,或者使他们能随系统资源的变化而继续使用。经常要重新编写程序,是因为分散开发的程序不能联合起来工作,或者当数据从一个系统传送到另一个系统是存在着接口问题。对一个程序进行必要的修改,会整个牵动对其他一些程序必须进行修改的连锁反应。维护工作会随程序数目的增加而急剧增加,如果不采取严格的控制措施,程序之间的交互作用的数量大致会按程序数目的平方增长。
维护工作量的增长会使应用积压问题变得更加严重。在许多企业中,维护工作投入占80%以上,而新的应用开发工作投入不到20%,有些企业的大部分程序员都在忙于维护工作。有的系统分析员设想那些现存的工作良好的程序应该不去管它,事实上,像这样的程序所生成或使用的数据也是其他项目所需要的,而且几乎总是以不同的格式相互提供,维护工作无法避免。在某些大型企业中,这种维护困境就像病魔缠身一样无法解脱。令人十分担忧的是,今后如果总是采取传统的方法来增加越来越多的应用项目和系统,问题将会越来越严重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04