京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据处理危机的表现
数据规划作为一种理论和实践方法,是20世纪80年代由美国管理与信息化专家詹姆斯·马丁在其专著《信息工程》中提出的,并在另一专著《总体数据规划方法论》中详加论述的。詹姆斯·马丁提出的数据规划的直接动因,是为了解决当时在计算机应用领域普遍出现的“数据处理危机问题”。
数据处理危机的表现
1.失败案例很多
一家大保险公司用3年的时间,花费了400万美元,开发了公司的计算机信息系统,为了推广应用,还抽调了不少业务人员参加培训学习,可是到头来不得不因系统不适用而放弃。美国国防部开发了10个自动化系统,1977年的研究表明,这10个系统都存在着要修改的问题,而这种修改耗资巨大。
两家航空公司指控计算机应用系统研制人员,因为他们花费4000万美元研制的软件实际上不好用。欧洲一家银行花费7000万美元开发的应用程序,美国空军花费3亿美元开发的指挥系统软件,都没有收到预期的效果。
这些失败的案例说明,正确的开发使用计算机,可以扩大人脑的才智,使管理人员从繁重的数字工作中解放出来;而不正确的开发使用计算机,则会出现前所未有的灾难,其后果不堪设想。在企业高层领导中时常出现对IT部门的不满情绪,认为他们花费了大量的人力、物力、财力和时间用于计算机系统的应用开发,但是收益甚微。例如,一家拥有昂贵的、世界一流的计算机网络系统的大公司总经理伤心的说,多年来他一直要求每天或者起码每周给他一份资金平衡数据,但是看来他所需要的信息是无指望了。
2.应用积压严重
在大多数注重管理的企业中,新的应用需求的增长速度要比IT部门所能提供的服务快得多,这种需求不平衡性日趋严重。
另一方面,无用的或效率很低的应用程序越积越多,即形成“应用积压”问题。长期的积压使IT部门尽快满足最终用户需求无能为力;许多用户需要的很有价值的应用项目,却因IT部门的负担过重而不能及时开发。IT部门负责人和工作人员承受着双重压力。
3.应用开发的低效率
随着计算机的普及,最终用户使用计算机的知识不断增加,对高效率开发各种应用软件的需求日益迫切,但是系统分析和程序设计工作太慢了,程序设计不能停留在手工劳动密集型的阶段。要自动化的完成这种工作,需要信息系统分析与设计的新方法。例如,要把汽车制造从个体手工生产方式变为大工业生产方式,需要建立一种真正的挤出结构。对于信息系统的自动化建设来说,也是同样的道理。这种必要的基础结构的建立,需要一定的时间和资金,但是这并不比早期系统的手工开发方法和维护所耗费的时间长、费用多。
4.系统维护的困难
数据处理和软件开发工作,由于所谓的维护问题而变得更糟。使用“维护”这个术语,是指的旧程序要重写,以适应新的需要,或者使他们能随系统资源的变化而继续使用。经常要重新编写程序,是因为分散开发的程序不能联合起来工作,或者当数据从一个系统传送到另一个系统是存在着接口问题。对一个程序进行必要的修改,会整个牵动对其他一些程序必须进行修改的连锁反应。维护工作会随程序数目的增加而急剧增加,如果不采取严格的控制措施,程序之间的交互作用的数量大致会按程序数目的平方增长。
维护工作量的增长会使应用积压问题变得更加严重。在许多企业中,维护工作投入占80%以上,而新的应用开发工作投入不到20%,有些企业的大部分程序员都在忙于维护工作。有的系统分析员设想那些现存的工作良好的程序应该不去管它,事实上,像这样的程序所生成或使用的数据也是其他项目所需要的,而且几乎总是以不同的格式相互提供,维护工作无法避免。在某些大型企业中,这种维护困境就像病魔缠身一样无法解脱。令人十分担忧的是,今后如果总是采取传统的方法来增加越来越多的应用项目和系统,问题将会越来越严重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22