京公网安备 11010802034615号
经营许可证编号:京B2-20210330
数据处理危机的表现
数据规划作为一种理论和实践方法,是20世纪80年代由美国管理与信息化专家詹姆斯·马丁在其专著《信息工程》中提出的,并在另一专著《总体数据规划方法论》中详加论述的。詹姆斯·马丁提出的数据规划的直接动因,是为了解决当时在计算机应用领域普遍出现的“数据处理危机问题”。
数据处理危机的表现
1.失败案例很多
一家大保险公司用3年的时间,花费了400万美元,开发了公司的计算机信息系统,为了推广应用,还抽调了不少业务人员参加培训学习,可是到头来不得不因系统不适用而放弃。美国国防部开发了10个自动化系统,1977年的研究表明,这10个系统都存在着要修改的问题,而这种修改耗资巨大。
两家航空公司指控计算机应用系统研制人员,因为他们花费4000万美元研制的软件实际上不好用。欧洲一家银行花费7000万美元开发的应用程序,美国空军花费3亿美元开发的指挥系统软件,都没有收到预期的效果。
这些失败的案例说明,正确的开发使用计算机,可以扩大人脑的才智,使管理人员从繁重的数字工作中解放出来;而不正确的开发使用计算机,则会出现前所未有的灾难,其后果不堪设想。在企业高层领导中时常出现对IT部门的不满情绪,认为他们花费了大量的人力、物力、财力和时间用于计算机系统的应用开发,但是收益甚微。例如,一家拥有昂贵的、世界一流的计算机网络系统的大公司总经理伤心的说,多年来他一直要求每天或者起码每周给他一份资金平衡数据,但是看来他所需要的信息是无指望了。
2.应用积压严重
在大多数注重管理的企业中,新的应用需求的增长速度要比IT部门所能提供的服务快得多,这种需求不平衡性日趋严重。
另一方面,无用的或效率很低的应用程序越积越多,即形成“应用积压”问题。长期的积压使IT部门尽快满足最终用户需求无能为力;许多用户需要的很有价值的应用项目,却因IT部门的负担过重而不能及时开发。IT部门负责人和工作人员承受着双重压力。
3.应用开发的低效率
随着计算机的普及,最终用户使用计算机的知识不断增加,对高效率开发各种应用软件的需求日益迫切,但是系统分析和程序设计工作太慢了,程序设计不能停留在手工劳动密集型的阶段。要自动化的完成这种工作,需要信息系统分析与设计的新方法。例如,要把汽车制造从个体手工生产方式变为大工业生产方式,需要建立一种真正的挤出结构。对于信息系统的自动化建设来说,也是同样的道理。这种必要的基础结构的建立,需要一定的时间和资金,但是这并不比早期系统的手工开发方法和维护所耗费的时间长、费用多。
4.系统维护的困难
数据处理和软件开发工作,由于所谓的维护问题而变得更糟。使用“维护”这个术语,是指的旧程序要重写,以适应新的需要,或者使他们能随系统资源的变化而继续使用。经常要重新编写程序,是因为分散开发的程序不能联合起来工作,或者当数据从一个系统传送到另一个系统是存在着接口问题。对一个程序进行必要的修改,会整个牵动对其他一些程序必须进行修改的连锁反应。维护工作会随程序数目的增加而急剧增加,如果不采取严格的控制措施,程序之间的交互作用的数量大致会按程序数目的平方增长。
维护工作量的增长会使应用积压问题变得更加严重。在许多企业中,维护工作投入占80%以上,而新的应用开发工作投入不到20%,有些企业的大部分程序员都在忙于维护工作。有的系统分析员设想那些现存的工作良好的程序应该不去管它,事实上,像这样的程序所生成或使用的数据也是其他项目所需要的,而且几乎总是以不同的格式相互提供,维护工作无法避免。在某些大型企业中,这种维护困境就像病魔缠身一样无法解脱。令人十分担忧的是,今后如果总是采取传统的方法来增加越来越多的应用项目和系统,问题将会越来越严重。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22