京公网安备 11010802034615号
经营许可证编号:京B2-20210330
用spss判断正态性检验的几种方法
题目: 某地 120 名男性红细胞数(blood)的数据(见程序中“BEGIN DATA”与“END DATA”之间的数据),此数据呈正态分布吗?(引自马斌荣主编书著,2001. P.150)
syntax 窗口编码如下:
* Ma Bin-Rong: SPSS for Medical Application,2Edit. 2001, P.150:.
DATA LIST FREE /blood.
BEGIN DATA.
568 460 500 580 560 434 561 570 519 645 563 552
540 541 461 501 581 620 573 518 562 597 551 574
480 481 542 462 502 584 517 637 580 547 521 442
564 575 482 543 463 503 585 572 541 525 495 523
634 532 565 483 544 464 504 559 587 494 522 448
526 618 595 577 484 545 558 505 493 586 622 524
456 576 527 490 579 557 546 466 506 572 533 450
566 528 491 567 556 465 485 547 588 507 589 535
596 492 569 555 578 513 530 486 548 534 508 588
628 526 554 531 512 570 514 521 487 459 590 509
END DATA.
NPAR TESTS /K-S(NORMAL)= blood /STATISTICS=DESCRIPTIVES.
DESCRIPTIVES VARIABLES=blood /STATISTICS=ALL.
FREQUENCIES VARIABLES=blood
/STATISTICS=ALL
/HISTOGRAM=NORMAL.
PPLOT /VARIABLES=blood /TYPE=Q-Q.
注: " *````` . " 在syntax中,表示注释的意思.
FREQUENCIES 语句用来描述频次;NPAR TESTS /K-S 语句是k-s检验,检验数据是否符合特定的分布。其中ORAML 表示检验的正态分布。 另:均匀分布是 UNIFORM ;泊松分布是 POISSON ; 指数分布是 EXPONENTIAL ; PPLOT语句生成pp图,检验正态分布与否。
代码执行后,结果如下:
结果分析:
Kolmogorov-Smirnov Test 的结果中, z 值等于0.532,p值等于0.940>0.5,因此数据呈近似正态分布。
Descriptive statics结果中,偏度系数Skewness=-0..33;峰度系数Kurtosis=-0.517;两个系数都小于1,可认为近似于正态分布。
QQ Plot 中,各点近似围绕着直线,说明数据呈近似正态分布。
结果思考:
检验数据的正态性,方法有很多,k-s test,descriptive,qq plot 等方法都可以检验数据的正态性。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27