京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据产业未来的瓶颈在哪里
通过对大数据产业链的分析,我们可以清楚地看到,在大数据产业链的各个生产环节中,各大公司都已开占位,随着高性能计算机、海量数据的存储和管理的流程的不断优化,技术能够解决的问题都终将不会成为问题。

总结下来,在德勤的分析看来,真正会制约或者成为大数据发展和应用瓶颈的有三个环节:
第一、数据收集和提取的合法性,数据隐私的保护和数据隐私应用之间的权衡。任何企业或机构从人群中提取私人数据,用户都有知情权,将用户的隐私数据用于商业行为时,都需要得到用户的认可。然而,目前,中国乃至全世界对于用户隐私应当如何保护、商业规则应当如何制定、触犯用户的隐私权应当如何惩治、法律规范应当如何制定等等一系列管理问题都大大滞后于大数据的发展速度。
未来很多大数据业务在最初发展阶段将会游走在灰色地带,当商业运作初具规模并开始对大批消费者和公司都产生影响之后,相关
的法律法规以及市场规范才会被迫加速制定出来。可以预计的是,尽管大数据技术层面的应用可以无限广阔,但是由于受到数据采集的限制,能够用于商业应用、服务于人们的数据要远远小于理论上大数据能够采集和处理的数据。数据源头的采集受限将大大限制大数据的商业应用。
第二、大数据发挥协同效应需要产业链各个环节的企业达成竞争与合作的平衡。大数据对基于其生态圈中的企业提出了更多的合作要求。如果没有对整体产业链的宏观把握,单个企业仅仅基于自己掌握的独立数据是无法了解产业链各个环节数据之间的关系,因此对消费者做出的判断和影响十分有限。
在一些信息不对称比较明显的行业,例如银行业以及保险业,企业之间数据共享的需求更为迫切。例如,银行业和保险业通常都需要建立一个行业共享的数据库,让其成员能够了解到单个用户的信用记录,消除担保方和消费者之间的信息不对称,让交易进行的更为顺利。然而,在很多情况下,这些需要共享信息的企业之间竞争和合作的关系同时存在,企业在共享数据之前,需要权衡利弊、避免在共享数据的同时丧失了其竞争优势。此外,当很多商家合作起来,很容易形成卖家同盟而导致消费者利益受到损失,影响到竞争的公平性。
大数据最具有想象力的发展方向是将不同的行业的数据整合起来,提供全方位立体的数据绘图,力图从系统的角度了解并重塑用户需求。然而,交叉行业数据共享需要平衡太多企业的利益关系,如果没有中立的第三方机构出面,协调所有参与企业之间的关系、制定数据共性及应用的规则,将大大限制大数据的用武之地。权威第三方中立机构的缺乏将制约大数据发挥出其最大的潜力。
第三、大数据结论的解读和应用。大数据可以从数据分析的层面上揭示各个变量之间可能的关联,但是数据层面上的关联如何具象到行业实践中?如何制定可执行方案应用大数据的结论?这些问题要求执行者不但能够解读大数据,同时还需深谙行业发展各个要素之间的关联。这一环节基于大数据技术的发展但又涉及到管理和执行等各方面因素。
在这一环节中,人的因素成为制胜关键。从技术角度,执行人需要理解大数据技术,能够解读大数据分析的结论;从行业角度,执行人要非常了解行业各个生产环节的流程的关系、各要素之间的可能关联,并且将大数据得到的结论和行业的具体执行环节一一对应起来;从管理的角度,执行人需要制定出可执行的解决问题的方案,并且确保这一方案和管理流程没有冲突,在解决问题的同时,没有制造出新的问题。这些条件,不但要求执行人深谙技术,同时应当是一个卓越的管理者,有系统论的思维,能够从复杂系统的角度关联地看待大数据与行业的关系。此类人才的稀缺性将制约大数据的发展。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15