
Top10 机器学习开源项目发布,历时一个月评出(附 GitHub 地址)
从将近 250 个机器学习开源项目中,综合各种条件进行打分排序,最终 Mybridge 团队评选出十大最新、最棒的机器学习开源项目。
这份 Top10 名单中包括对象检测、换脸、预测等等最热的 AI 明星、话题性研究和代码。它们在 GitHub 上的平均标星数量是 2500 多颗。希望这 10 大开源项目,对你有所帮助。
Rank 10
作者:Posenhuang 等(微软研究院)
GitHub:https://github.com/posenhuang/NPMT
★ Star:68
NPMT ,基于短语的神经机器翻译,这是一项来自微软研究院团队的研究。这个机器翻译领域的新突破,没有使用任何注意力机制。
这个方法通过 Sleep - WAke 网络( SWAN )明确地建模输出序列中的短语结构。SWAN 是一种基于分割的序列模型方法。
NPMT 的源代码基于 Torch 中的 fairseq 工具箱建立。fairseq 是 Facebook AI 研究院开源的序列到序列工具箱,这个方法使用卷积神经网络来做语言翻译,比循环神经网络提速 9 倍。
Rank 9
Deep-neuroevolution
作者:Uber AI 实验室
GitHub:https://github.com/uber-common/deep-neuroevolution
★ Star:392
这是共享出行巨头 Uber 开源的算法,他们此前集中发布了 5 篇论文,支持一种正在兴起的认识:通过用进化算法来优化神经网络的神经进化( neuroevolution )也是为强化学习( RL )训练深度神经网络的一种有效方法。
而这次 GitHub 中公布的代码,包括以下算法的分布式实现:
1、Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
论文地址:https://arxiv.org/abs/1712.06567
2、Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents
论文地址:https://arxiv.org/abs/1712.06560
这些代码基于 OpenAI 此前公布的源代码和论文。
Rank 8
Simple
作者:chrisstroemel
GitHub:https://github.com/chrisstroemel/Simple
★ Star:235
Simple 是贝叶斯优化的更具可扩展性的替代方法。像贝叶斯优化一样,它的样本效率很高,能用尽可能少的样本收敛到全局最优。
对于典型的优化工作负载,贝叶斯优化消耗的 CPU 时间以分钟计,而 Simple 使用的 CPU 时间以毫秒计。如下图所示:
Rank 7
作者:Henry Mao 等(加州大学圣迭戈分校)
GitHub:https://github.com/calclavia/DeepJ
★ Star:313
DeepJ 是一种端到端生成模型,能够以特定的混合风格来实时创作钢琴曲。这个算法能够生成可以调整参数的音乐,这种可调整的属性,能为艺术家、电影制作人、作曲家等带来实际的帮助。
使用这套代码需要 Python 3.5 。
访问下面的 Demo 地址,可玩、可感受,亦可当背景音听。
Demo 地址:https://deepj.ai/
Rank 6
作者:Charles Beattie 等(DeepMind)
GitHub:https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/psychlab
★ Star:4774
Psychlab ,DeepMind 为 AI 开设的心理学实验室。
其实就是个第一人称视角 3D 游戏世界,这个心理学实验室当然也是个模拟环境,研究对象是其中的深度强化学习智能体( Agents )。Psychlab 能够实现传统实验室中的经典心理学实验,让这些本来用来研究人类心理的实验,也可以用在 AI 智能体上。
Rank 5
作者:DeepMind
GitHub:https://github.com/deepmind/dm_control
★ Star:882
火遍全球的 AlphaGo 让我们知道了强化学习打游戏究竟有多厉害,这么强大的算法什么时候才能打破次元壁,走进现实、控制物理世界中的物体呢?
DeepMind 已经开始往这方面努力。他们此前发布的控制套件“ DeepMind Control Suite ”,就为设计和比较用来控制物理世界的强化学习算法开了个头。
Control Suite 设计了一组有着标准化结构、可解释奖励的连续控制任务,还为强化学习 Agent 提供一组性能测试指标。
Control Suite 中的任务可以分为 14 个领域,也就是 14 类物理模型,上排从左到右分别是:
体操机器人 Acrobot ,(两节钟摆)、杯中小球、倒立摆、猎豹形机器人、手指、鱼、单足跳跃机器人,下排从左到右分别是人形机器人、机械手、钟摆、质点、形似两节手臂的 Reacher 、游泳机器人、步行者。
Rank 4
作者:Marco Ribeiro 等(华盛顿大学)
GitHub:https://github.com/marcotcr/lime
★ Star:3148
在这次的 Top10 项目中,这个算是“老资格”了。主要基于 KDD2016 上发表的论文:《“为什么我应该相信你?”解释任何分类器的预测》。
这个研究提出了局部可理解的与模型无关的解释技术( Local Interpretable Model-Agnostic Explanations: LIME ),一种用于解释任何机器学习分类器的预测的技术,并在多种与信任相关的任务中评估了它的可用性。
下面这段视频,是一个更直观的解释。
Rank 3
Gradient-checkpointing
作者:OpenAI
GitHub:https://github.com/openai/gradient-checkpointing
★ Star:1107
GPU 内存太小可能是神经网络训练过程中最大的拦路虎。
不怕,用这个 OpenAI 推出的 gradient-checkpointing 工具程序包,对于前馈模型来说,仅仅需要增加 20% 的计算时间,就能让 GPU 处理十倍大的模型。
这个工具包的开发者是 OpenAI 的研究科学家 Tim Salimans 和前 Google Brain 工程师的数据科学家 Yaroslav Bulatov 。
这个工具包使用了“用亚线性的存储成本训练神经网络”的技术,为简单的前馈网络提供了等价的内存存储,同时能为一般的神经网络节省内存,比如多层架构。
Rank 2
作者:Hidde Jansen
GitHub:https://github.com/deepfakes/faceswap
★ Star:3629
最近 Deepfakes 在 AI 、AV 两届掀起轩然大波。简单的说,就是 AI 可以帮你给 AV 小片换脸,替换成任何你想看的明星。
而 FaceSwap 是一个基于 deepfakes 的非官方开源项目。
Rank 1
作者:Facebook AI 研究院
GitHub:https://github.com/facebookresearch/Detectron
★ Star:11248
这个应该是当之无愧的第一吧。
Detectron 是 Facebook 的物体检测平台,今年初宣布开源,它基于 Caffe2 ,用 Python 写成,这次开放的代码中就包含了 Mask R-CNN 的实现。
除此之外,Detectron 还包含了 ICCV 2017 最佳学生论文 RetinaNet ,Ross Girshick( RBG )此前的研究 Faster R-CNN 和 RPN 、Fast R-CNN 、以及 R-FCN 的实现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15