
Top10 机器学习开源项目发布,历时一个月评出(附 GitHub 地址)
从将近 250 个机器学习开源项目中,综合各种条件进行打分排序,最终 Mybridge 团队评选出十大最新、最棒的机器学习开源项目。
这份 Top10 名单中包括对象检测、换脸、预测等等最热的 AI 明星、话题性研究和代码。它们在 GitHub 上的平均标星数量是 2500 多颗。希望这 10 大开源项目,对你有所帮助。
Rank 10
作者:Posenhuang 等(微软研究院)
GitHub:https://github.com/posenhuang/NPMT
★ Star:68
NPMT ,基于短语的神经机器翻译,这是一项来自微软研究院团队的研究。这个机器翻译领域的新突破,没有使用任何注意力机制。
这个方法通过 Sleep - WAke 网络( SWAN )明确地建模输出序列中的短语结构。SWAN 是一种基于分割的序列模型方法。
NPMT 的源代码基于 Torch 中的 fairseq 工具箱建立。fairseq 是 Facebook AI 研究院开源的序列到序列工具箱,这个方法使用卷积神经网络来做语言翻译,比循环神经网络提速 9 倍。
Rank 9
Deep-neuroevolution
作者:Uber AI 实验室
GitHub:https://github.com/uber-common/deep-neuroevolution
★ Star:392
这是共享出行巨头 Uber 开源的算法,他们此前集中发布了 5 篇论文,支持一种正在兴起的认识:通过用进化算法来优化神经网络的神经进化( neuroevolution )也是为强化学习( RL )训练深度神经网络的一种有效方法。
而这次 GitHub 中公布的代码,包括以下算法的分布式实现:
1、Deep Neuroevolution: Genetic Algorithms Are a Competitive Alternative for Training Deep Neural Networks for Reinforcement Learning
论文地址:https://arxiv.org/abs/1712.06567
2、Improving Exploration in Evolution Strategies for Deep Reinforcement Learning via a Population of Novelty-Seeking Agents
论文地址:https://arxiv.org/abs/1712.06560
这些代码基于 OpenAI 此前公布的源代码和论文。
Rank 8
Simple
作者:chrisstroemel
GitHub:https://github.com/chrisstroemel/Simple
★ Star:235
Simple 是贝叶斯优化的更具可扩展性的替代方法。像贝叶斯优化一样,它的样本效率很高,能用尽可能少的样本收敛到全局最优。
对于典型的优化工作负载,贝叶斯优化消耗的 CPU 时间以分钟计,而 Simple 使用的 CPU 时间以毫秒计。如下图所示:
Rank 7
作者:Henry Mao 等(加州大学圣迭戈分校)
GitHub:https://github.com/calclavia/DeepJ
★ Star:313
DeepJ 是一种端到端生成模型,能够以特定的混合风格来实时创作钢琴曲。这个算法能够生成可以调整参数的音乐,这种可调整的属性,能为艺术家、电影制作人、作曲家等带来实际的帮助。
使用这套代码需要 Python 3.5 。
访问下面的 Demo 地址,可玩、可感受,亦可当背景音听。
Demo 地址:https://deepj.ai/
Rank 6
作者:Charles Beattie 等(DeepMind)
GitHub:https://github.com/deepmind/lab/tree/master/game_scripts/levels/contributed/psychlab
★ Star:4774
Psychlab ,DeepMind 为 AI 开设的心理学实验室。
其实就是个第一人称视角 3D 游戏世界,这个心理学实验室当然也是个模拟环境,研究对象是其中的深度强化学习智能体( Agents )。Psychlab 能够实现传统实验室中的经典心理学实验,让这些本来用来研究人类心理的实验,也可以用在 AI 智能体上。
Rank 5
作者:DeepMind
GitHub:https://github.com/deepmind/dm_control
★ Star:882
火遍全球的 AlphaGo 让我们知道了强化学习打游戏究竟有多厉害,这么强大的算法什么时候才能打破次元壁,走进现实、控制物理世界中的物体呢?
DeepMind 已经开始往这方面努力。他们此前发布的控制套件“ DeepMind Control Suite ”,就为设计和比较用来控制物理世界的强化学习算法开了个头。
Control Suite 设计了一组有着标准化结构、可解释奖励的连续控制任务,还为强化学习 Agent 提供一组性能测试指标。
Control Suite 中的任务可以分为 14 个领域,也就是 14 类物理模型,上排从左到右分别是:
体操机器人 Acrobot ,(两节钟摆)、杯中小球、倒立摆、猎豹形机器人、手指、鱼、单足跳跃机器人,下排从左到右分别是人形机器人、机械手、钟摆、质点、形似两节手臂的 Reacher 、游泳机器人、步行者。
Rank 4
作者:Marco Ribeiro 等(华盛顿大学)
GitHub:https://github.com/marcotcr/lime
★ Star:3148
在这次的 Top10 项目中,这个算是“老资格”了。主要基于 KDD2016 上发表的论文:《“为什么我应该相信你?”解释任何分类器的预测》。
这个研究提出了局部可理解的与模型无关的解释技术( Local Interpretable Model-Agnostic Explanations: LIME ),一种用于解释任何机器学习分类器的预测的技术,并在多种与信任相关的任务中评估了它的可用性。
下面这段视频,是一个更直观的解释。
Rank 3
Gradient-checkpointing
作者:OpenAI
GitHub:https://github.com/openai/gradient-checkpointing
★ Star:1107
GPU 内存太小可能是神经网络训练过程中最大的拦路虎。
不怕,用这个 OpenAI 推出的 gradient-checkpointing 工具程序包,对于前馈模型来说,仅仅需要增加 20% 的计算时间,就能让 GPU 处理十倍大的模型。
这个工具包的开发者是 OpenAI 的研究科学家 Tim Salimans 和前 Google Brain 工程师的数据科学家 Yaroslav Bulatov 。
这个工具包使用了“用亚线性的存储成本训练神经网络”的技术,为简单的前馈网络提供了等价的内存存储,同时能为一般的神经网络节省内存,比如多层架构。
Rank 2
作者:Hidde Jansen
GitHub:https://github.com/deepfakes/faceswap
★ Star:3629
最近 Deepfakes 在 AI 、AV 两届掀起轩然大波。简单的说,就是 AI 可以帮你给 AV 小片换脸,替换成任何你想看的明星。
而 FaceSwap 是一个基于 deepfakes 的非官方开源项目。
Rank 1
作者:Facebook AI 研究院
GitHub:https://github.com/facebookresearch/Detectron
★ Star:11248
这个应该是当之无愧的第一吧。
Detectron 是 Facebook 的物体检测平台,今年初宣布开源,它基于 Caffe2 ,用 Python 写成,这次开放的代码中就包含了 Mask R-CNN 的实现。
除此之外,Detectron 还包含了 ICCV 2017 最佳学生论文 RetinaNet ,Ross Girshick( RBG )此前的研究 Faster R-CNN 和 RPN 、Fast R-CNN 、以及 R-FCN 的实现。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18