京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据时代:数据安全管理是最大风险
大数据时代的来临,对中国来说面临安全管理能力、存储及处理能力、应用能力和人才培养能力等多方面的新挑战。

大数据的安全管理能力挑战。数据安全管理问题,是我国应用大数据面临的最大风险。虽然将海量数据集中存储,方便了数据分析和处理,但由于安全管理不当所造成的大数据丢失和损坏,则将引发毁灭性的灾难。有专家指出:由于新技术的产生和发展,对隐私权的侵犯已经不再需要物理的、强制性的侵入,而是以更加微妙的方式广泛衍生,由此所引发的数据风险和隐私风险,也将更为严重。
当前,我国对大数据的保护能力还十分有限,数据被恶意使用的现象仍然难以掌控。我国个人和企业对于数据资源的保护意识,还比较薄弱。随着电子商务、社交网络、物联网、云计算、以及移动互联网的全面普及,我国数据资源与全球的数据资源一样,正在呈现爆发性、多样性的增长态势。但是,由于对数据保护认识的不足,以及对个人电脑安全防护的不当,个人或企业的隐私数据暴露在互联网上的现象十分普遍。2011年,我国最大程序员网站的600万个人信息和邮箱密码被黑客公开,进而引发了连锁的泄密事件。2013年,中国人寿80万客户的个人保单信息发现被泄露。这些事件都凸显出在大数据时代,信息安全管理所面临的、前所未有的挑战。
大数据的存储及处理能力挑战。当前,我国大数据存储、分析和处理的能力还很薄弱,与大数据相关的技术和工具的运用也相当不成熟,大部分企业仍处于IT产业链的低端。我国在数据库、数据仓库、数据挖掘以及云计算等领域的技术,普遍落后于国外先进水平。
在大数据存储方面,数据的爆炸式增长,数据来源的极其丰富和数据类型的多种多样,使数据存储量更庞大,对数据展现的要求更高。而目前我国传统的数据库,还难以存储如此巨大的数据量。在大数据的分析处理方面,由于针对具体的应用类型,需要采用不同的处理方式,因此必须通过建立高级大数据的分析模型,来实现快速抽取大数据的核心数据、高效分析这些核心数据并从中发现价值,而这些数据分析能力我国还很欠缺。
因此,如何提高我国对大数据资源的存储和整合能力,实现从大数据中发现、挖掘出有价值的信息和知识,是当前我国大数据存储和处理所面临的挑战。
大数据的应用能力挑战。我国拥有庞大的人口资源和大数据应用市场,市场复杂度高且变化多端,使我国成为世界上最复杂的大数据国家。我国互联网用户,通过利用互联网上的海量数据来提升自身的商业价值和科研价值。我国企业用户,也已积累了大量的数据信息资产,如产品数据、运营数据和价值链数据等。随着我国企业信息化系统的深入部署和逐步完善,大数据应用能力所引发的商业模式的改变,将直接影响我国企业的竞争能力。
在政府决策方面,当前我国政府部门的数据规模还很小,多数仍集中在对结构化数据的应用上,而对于非结构化数据的利用则几乎为空白。利用数据分析来支撑政府决策,我国做得还很不够。从认识到“大数据能产生价值”,到实现了“从大数据中找到价值”,再到“有效使用大数据产生的价值”,政府目前也只是刚刚起步。当前,如何收集数据、使用数据、开放数据、管理数据和利用数据来支撑决策,是我国面临的又一新挑战。
大数据的人才培养能力挑战。大数据领域技术人才和商业人才的缺乏,是一个全球性的问题。根据麦肯锡的一项研究显示,仅美国每年就有14万到19万名数据科学家的缺口,预计到2018年将达到44万到49万,而数据科学家则更是严重缺乏。
我国大数据分析专业人才缺口究竟有多大,有专家粗略估算至少需要100万人。当前,具备综合掌控数学、统计学、机器学习等方面知识的复合型人才,同时又可承担数据分析和数据挖掘的数据科学家,在我国尤为奇缺。目前,我国初级的分析人员只能对数据进行简单的报表和进行描述性分析,而随着未来大数据应用的不断增长,我国大数据人才储备不足的问题将更加严重。因此,培养能够解决大数据问题所需的人才,包括培养大数据分析人才和管理人才,是我们需要面对的又一紧迫问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21在实际业务数据分析中,单一数据表往往无法满足需求——用户信息存储在用户表、消费记录在订单表、商品详情在商品表,想要挖掘“ ...
2026-01-21在数字化转型浪潮中,企业数据已从“辅助资源”升级为“核心资产”,而高效的数据管理则是释放数据价值的前提。企业数据管理方法 ...
2026-01-21在数字化商业环境中,数据已成为企业优化运营、抢占市场、规避风险的核心资产。但商业数据分析绝非“堆砌数据、生成报表”的简单 ...
2026-01-20定量报告的核心价值是传递数据洞察,但密密麻麻的表格、复杂的计算公式、晦涩的数值罗列,往往让读者望而却步,导致核心信息被淹 ...
2026-01-20在CDA(Certified Data Analyst)数据分析师的工作场景中,“精准分类与回归预测”是高频核心需求——比如预测用户是否流失、判 ...
2026-01-20在建筑工程造价工作中,清单汇总分类是核心环节之一,尤其是针对楼梯、楼梯间这类包含多个分项工程(如混凝土浇筑、钢筋制作、扶 ...
2026-01-19数据清洗是数据分析的“前置必修课”,其核心目标是剔除无效信息、修正错误数据,让原始数据具备准确性、一致性与可用性。在实际 ...
2026-01-19在CDA(Certified Data Analyst)数据分析师的日常工作中,常面临“无标签高维数据难以归类、群体规律模糊”的痛点——比如海量 ...
2026-01-19在数据仓库与数据分析体系中,维度表与事实表是构建结构化数据模型的核心组件,二者如同“骨架”与“血肉”,协同支撑起各类业务 ...
2026-01-16在游戏行业“存量竞争”的当下,玩家留存率直接决定游戏的生命周期与商业价值。一款游戏即便拥有出色的画面与玩法,若无法精准识 ...
2026-01-16为配合CDA考试中心的 2025 版 CDA Level III 认证新大纲落地,CDA 网校正式推出新大纲更新后的第一套官方模拟题。该模拟题严格遵 ...
2026-01-16在数据驱动决策的时代,数据分析已成为企业运营、产品优化、业务增长的核心工具。但实际工作中,很多数据分析项目看似流程完整, ...
2026-01-15