京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不到两年,他是如何从外行进阶到参与Google人工智能项目
这篇访谈稿采访到成文用时约三周的时间,虽然对今天的这位嘉宾认识不深,但是你会发现从他的字里行间满满的谦恭,对知识的渴求,和自己进步的鞭策。
榜眼初相识
吴*天
2017年12月
CDALevel II大数据分析榜眼
北理工数学系毕业,是不折不扣的理工科学生,毕业以后也像很多人一样,面临着就业的选择。尤其是在选择数据作为自己从业之路的阶段,也曾有着困惑、疑虑、顿悟和坚持。
数据分析之路的风雨兼程
当问到他在选择数据分析有哪些记忆深刻的工作经历时,他若有所思的回忆到:
说到记忆深刻的工作经历,其实从选择数据分析之路开始,就是一路的披荆斩棘,一路的风雨兼程。
从SPSS到R,从Python到Scala,从MapReduce到Spark,可以说每个阶段学习与工作,每个阶段所遭遇的困难与阻碍,以及最终的收获,都令人记忆犹新。
因此对我而言,印象深刻的并不是工作经历,而是在选择数据作为自己从业之路的那个阶段,自己的困惑、疑虑、顿悟和坚持。
因为择业对我而言不是混口饭吃,我希望自己所从事的行业能最终成为我的人生方向。
在这个过程中,CDA给了巨大的帮助。
应对工作变动的最好心态是空杯学习
交谈中我发现,他的谦逊和学习的空杯心态正是每个CDA学员,每个CDA人,甚至每个正在工作岗位奋斗的人都应当学习借鉴并且欠缺的。
在CDA毕业以后,先是在成都数联益康科技有限公司任数据分析师、大数据分析师等职,早些时候主要从事算法研发的工作,后期由于公司业务需要,工作的重心转向了分布式集群架构及分布式算法执行等相关工作。
在这家公司虽然有变动,但是也是因为这些变动让我变得更懂得学习的空杯心态,逐步让自己提升。
正是因为之前的积累,目前,很荣幸的参与到谷歌的一项人工智能项目当中,暂时处在一个学习和提升的阶段。
学习这件小事
他说,和CDA的结缘是因为学习,因求学与CDA相识,并到现在的互相信任彼此扶持。
其实我同时也是CDA数据分析师脱产班第四期学员。
如果说大学教育为我打下了一个扎实的知识基础,那么CDA课程的学习,才真正帮我奠定了一个完整的数据分析知识理论框架及方法论,这套理论框架和方法论,在我日后的各个学习和工作阶段,都给我提供了莫大的帮助。
其实参与CDA的考试,本质上是出于对CDA数据分析师品牌的认可,相信CDA考试的质量及其社会认可度。下个阶段,我想在技术上寻求进一步的突破和发展,将暂时离开大数据架构及分析这套技术框架,投身人工智能领域,而参加一场考试作为技术实力的验证与证明,最合适不过,外加基于我对CDA的了解与认可,参加CDA LEVEL II考试便是不二之选。
其实我经常会参加一些考试来借此锻炼自身技术,在这些国内的数据分析考试中,CDA的考试质量确实是最高的,在本次考试中也暴露了自身技术上的很多不足,有待后续继续提高。
学习经验和技巧
每个人都有不同的学习方法和学习技巧,但是他的学习方法听完以后,你会觉得不仅仅是逻辑在线,更重要的是学习的思路清晰,贵在坚持。
那么关于学习心得,我的想法是,大数据整个知识体系其实内容非常多,要进行系统性学习的话,除了在要有恒心和毅力之外,最重要的就是要从诸多知识内容中梳理出一条主线。
那对于大数据分析师而言,知识内容的主线应该就是算法原理及其落地实践工具的掌握,机器学习和数据挖掘算法原理是核心,有了一定的算法原理知识后,首先是学习利用菜单式操作的统计工具SPSS进行实践,然后进一步学习利用Python进行算法编程方面实践,最后则是利用spark进行算法的分布式实践,掌握不同工具,实际上最终还是围绕实践算法来逐级展开。
有了学习主线,后面就是按部就班的一部分一部分来进行学习。
2018年6月CDA认证考试官方报名途径
点击“阅读原文”报名
CDA认证考试交流分享
请添加个人微信(微信号:CDAbanzhuren),备注“CDA考试”进群。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05