京公网安备 11010802034615号
经营许可证编号:京B2-20210330
不到两年,他是如何从外行进阶到参与Google人工智能项目
这篇访谈稿采访到成文用时约三周的时间,虽然对今天的这位嘉宾认识不深,但是你会发现从他的字里行间满满的谦恭,对知识的渴求,和自己进步的鞭策。
榜眼初相识
吴*天
2017年12月
CDALevel II大数据分析榜眼
北理工数学系毕业,是不折不扣的理工科学生,毕业以后也像很多人一样,面临着就业的选择。尤其是在选择数据作为自己从业之路的阶段,也曾有着困惑、疑虑、顿悟和坚持。
数据分析之路的风雨兼程
当问到他在选择数据分析有哪些记忆深刻的工作经历时,他若有所思的回忆到:
说到记忆深刻的工作经历,其实从选择数据分析之路开始,就是一路的披荆斩棘,一路的风雨兼程。
从SPSS到R,从Python到Scala,从MapReduce到Spark,可以说每个阶段学习与工作,每个阶段所遭遇的困难与阻碍,以及最终的收获,都令人记忆犹新。
因此对我而言,印象深刻的并不是工作经历,而是在选择数据作为自己从业之路的那个阶段,自己的困惑、疑虑、顿悟和坚持。
因为择业对我而言不是混口饭吃,我希望自己所从事的行业能最终成为我的人生方向。
在这个过程中,CDA给了巨大的帮助。
应对工作变动的最好心态是空杯学习
交谈中我发现,他的谦逊和学习的空杯心态正是每个CDA学员,每个CDA人,甚至每个正在工作岗位奋斗的人都应当学习借鉴并且欠缺的。
在CDA毕业以后,先是在成都数联益康科技有限公司任数据分析师、大数据分析师等职,早些时候主要从事算法研发的工作,后期由于公司业务需要,工作的重心转向了分布式集群架构及分布式算法执行等相关工作。
在这家公司虽然有变动,但是也是因为这些变动让我变得更懂得学习的空杯心态,逐步让自己提升。
正是因为之前的积累,目前,很荣幸的参与到谷歌的一项人工智能项目当中,暂时处在一个学习和提升的阶段。
学习这件小事
他说,和CDA的结缘是因为学习,因求学与CDA相识,并到现在的互相信任彼此扶持。
其实我同时也是CDA数据分析师脱产班第四期学员。
如果说大学教育为我打下了一个扎实的知识基础,那么CDA课程的学习,才真正帮我奠定了一个完整的数据分析知识理论框架及方法论,这套理论框架和方法论,在我日后的各个学习和工作阶段,都给我提供了莫大的帮助。
其实参与CDA的考试,本质上是出于对CDA数据分析师品牌的认可,相信CDA考试的质量及其社会认可度。下个阶段,我想在技术上寻求进一步的突破和发展,将暂时离开大数据架构及分析这套技术框架,投身人工智能领域,而参加一场考试作为技术实力的验证与证明,最合适不过,外加基于我对CDA的了解与认可,参加CDA LEVEL II考试便是不二之选。
其实我经常会参加一些考试来借此锻炼自身技术,在这些国内的数据分析考试中,CDA的考试质量确实是最高的,在本次考试中也暴露了自身技术上的很多不足,有待后续继续提高。
学习经验和技巧
每个人都有不同的学习方法和学习技巧,但是他的学习方法听完以后,你会觉得不仅仅是逻辑在线,更重要的是学习的思路清晰,贵在坚持。
那么关于学习心得,我的想法是,大数据整个知识体系其实内容非常多,要进行系统性学习的话,除了在要有恒心和毅力之外,最重要的就是要从诸多知识内容中梳理出一条主线。
那对于大数据分析师而言,知识内容的主线应该就是算法原理及其落地实践工具的掌握,机器学习和数据挖掘算法原理是核心,有了一定的算法原理知识后,首先是学习利用菜单式操作的统计工具SPSS进行实践,然后进一步学习利用Python进行算法编程方面实践,最后则是利用spark进行算法的分布式实践,掌握不同工具,实际上最终还是围绕实践算法来逐级展开。
有了学习主线,后面就是按部就班的一部分一部分来进行学习。
2018年6月CDA认证考试官方报名途径
点击“阅读原文”报名
CDA认证考试交流分享
请添加个人微信(微信号:CDAbanzhuren),备注“CDA考试”进群。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26