
保险产业拥抱“大数据时代”
当今,数据已经渗透到每一个行业和业务领域,成为重要的生产因素。人们对于海量数据的挖掘和运用,预示着新一波生产率增长和消费者盈余浪潮的到来。中国的保险(和讯放心保)销售模式正在酝酿新的变革,互联网、大数据时代的到来给金融业造成的革命性、颠覆性的变化正在发酵,对保险业数据驾驭能力提出了新的挑战,也为保险业的大发展提供了前所未有的空间和潜力。
深入挖掘大数据应用潜质
目前,大多数保险企业都已经认识到“大数据”改善决策流程和业务成效的潜能,但却不知道该如何入手,部分企业在“大数据”的时代浪潮下积极探索,成为先行者。2010年,阳光保险集团建成数据挖掘系统,这在保险行业是第一家。利用该系统,开展了许多保险大数据智慧应用的项目,获得了一些成果,同时培养出了国内保险行业的第一批数据挖掘师。
大数据应用的关键是理念。思维转变过来,数据就能被巧妙地用来激发新产品和新型服务。举一个利用与不利用数据结果相去甚远的例子:“淘宝现有一种运费保险,即淘宝买家退货时产生的退货运费原本由买家承担,如果买家购买了运费保险,退货运费由保险公司来承担。这种购买的结果是保险公司经营亏损很严重,直接导致它们不愿意再发展和扩大运费保险。”运费保险真的必然亏损吗?答案是“No”。保险公司设计一套大数据智慧应用的解决方案:“因为退货发生的概率,跟买家的习惯、卖家的习惯、商品的品种、商品的价值、淘宝的促销活动等都有关系,所以,使用以上种种数据,应用数据挖掘的方法,建立退货发生的概率模型,植入系统就可以在每一笔交易发生的时候,给出不同的保险费率,使保险费的收取,与退货发生的概率相匹配,这样运费险就不会亏损了。在此基础上,保险公司才有可能通过运费险扩大客户覆盖面。”由严重亏损到成本控制得当并获取客户,靠的就是通过分析,挖掘大数据所提供的价值,吸引客户。
大数据网络保险时代来临
大数据发展的障碍,在于数据的“流动性”和“可获取性”,而网络完美的解决了这个问题。通过网络对大数据进行收集、发布、分析、预测会使决策更为精准,释放更多数据的隐藏价值。与传统保险方式相比,网络保险具有降低保险公司和保险中介机构运营成本,拓展保险公司和保险中介机构业务范围,新型营销手段,有价值的交互式交流工具,提供较高水平的信息服务,为客户提供便捷工具,使客户享受个性化服务,降低保险公司风险,更有效地保护客户隐私以及虚拟化的交易方式等特性。
可以说,众安在线财险是将大数据与网络保险进行深度融合的例子。其产品主要从保障互联网安全运行的角度出发,为互联网用户提供网络交易安全、网络服务后续的解决方案。与之前的网销不同,众安在线所倡导的互联网保险不再是简单地将传统保险产品移植到互联网上,而是根据上网保险人群的需求以及在线的特点设计产品,为客户的网上生活提供全面保障。
从产品设计角度来说,大数据时代下的网络保险能最大程度地满足不同客户的个性化需求,网络保险能优化客户的体验,“大数据”能根据客户需求设计出真正让客户满意的产品和服务,两者结合则完全是“以客户为中心”的。
从大数据时代的网络销售优势来看,一是大数据时代保险网销具有最广泛的客户群,有最大的发展潜力。二是互联网具有信息量大、传导速度快、透明度高的特点,交易双方信息更为对称。通过建立新型的“自动式”网络服务系统,保户足不出户就可以方便快捷地从保险公司的服务系统上获取公司背景到具体保险产品的详细情况,还可以自由地选择所需要的保险公司及险种,并进行对比,能获得低价、高效服务。三是节省费用,降低成本。通过网络出售保险或提供服务,保险公司只需支付低廉的网络服务费,从而降低房租、佣金、薪资、印刷费、交通费、通讯费等成本的支出。四是数据管理方面的天然优势。保险市场专业化的深入、经营水平的提高、服务品质的提升,都要建立在对数据尤其对客户消费数据的深入挖掘和分析的基础之上。
可见,大数据时代下的网络保险有利于推动营销体制改革。多年来,我国一直以保险代理人作为保险推销体系的主体重点发展,在寿险推销方面形成了以寿险营销员为主体的寿险营销体系。但是,目前这种体制还存在较为突出的问题。因客户缺乏与保险公司的直接交流,会导致营销人员为急于获取保单而一味夸大投保的益处,隐瞒不足之处,给保险公司带来极大的道德风险,为保险业的长远发展埋下隐患。而且,保险营销人员素质良莠不齐,又给保险公司带来极大的业务风险。此外,现有营销机制还存在效率低下的弊端。
因此,在大数据时代下发展网络保险,可以快速便捷地进行信息收集、发布,完美地实现大数法则的精致应用。为公众提供低成本、高效率的保险服务。
网络保险需多项配套支持
一是财政支持。在推进保险公司的信息化进程中,政府可采取诸如信息技术方面的投资部分抵消税收,税前可以预留部分资金用于信息技术改造等一系列措施,激励和推进大数据网络保险信息化进程。
二是培育网络保险集市。网络保险集市就是在网络上提供一个场所,使客户能在这里找到大量的保险公司,方便了解各个公司的基本信息或查询各个保险公司的某一险种的有关信息,并对该险种的优劣进行对比分析,选择最佳的公司进行投保。网络保险集市不仅会给客户带来方便,同时也会扩大保险公司的影响和业务量。因此,保险公司应在保监会和保险协会的组织下,全力支持并在网络保险集市上展示自己,进一步推动我国网络保险集市的发展。
三是建设大数据中心。大数据中心需要保监会和保险行业进行战略性的顶层设计。首先是与我国标准化数据管理中心进行合作,制定出保险业数据标准化的制度。其次是通过5—10年的时间逐步完成行业数据标准化建设。同时设计出非线性能融合关系数据,并能进一步扩展的数据库。此外是设计柔性的框架和接口。通过以上步骤逐步完成我国保险业大数据中心的建设。
四是开发适合的险种。利用网络收集数据形成大数据,根据大数据精致的利用大数法则设计客户需求的产品,通过网络销售产品,并根据客户反馈进一步修正产品,实现开发与销售完美互动。
五是吸纳优秀人才和对已有员工在职教育。许多保险公司有一个规定,即无论是管理人员还是技术人员都必须完成一定的保险任务。似乎这条规定能为公司增加一点业务量,但是它无形之中就把一些优秀的保险管理人员和技术人员拒之于门外。大数据时代需要一流的管理人才和技术人才,必须破除这条不成文的规定。同时还应该重视对已有员工进行保险专业知识、外语知识和信息技术知识再教育,通过再教育提高公司员工综合素质。
六是责任与自由并举的信息管理。调查显示,66%的被调查者最关心投保后支付保费的转账安全性。消费者对于网络消费的顾虑心理主要集中在对网上交易安全和个人隐私保护的担忧上。因此,网络保险应格外注重网络安全,实现责任与自由的矛盾的和谐统一。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17