
漫画图解:什么是区块链
什么是区块链?
区块链,英文 Blockchain,本质上是一种去中心化的分布式数据库。任何人只要架设自己的服务器,接入区块链网络,都可以成为这个庞大网络的一个节点。
区块链既然本质是数据库,里面究竟存储了什么东西呢?让我们来了解一下区块链的基本单元:区块(Block)。
一个区块分为两大部分:
1.区块头
区块头里面存储着区块的头信息,包含上一个区块的哈希值(PreHash),本区块体的哈希值(Hash),以及时间戳(TimeStamp)等等。
2.区块体
区块体存储着这个区块的详细数据(Data),这个数据包含若干行记录,可以是交易信息,也可以是其他某种信息。
刚才提及的哈希值又是什么意思呢?
想必大家都听说过MD5,MD5就是典型的哈希算法,可以把一串任意长度的明文转化成一串固定长度(128bit)的字符串,这个字符串就是哈希值。
而在我们的区块链中,采用的是一种更为复杂的哈希算法,叫做SHA256。最新的数据信息(比如交易记录)经过一系列复杂的计算,最终会通过这个哈希算法转化成了长度为256bit的哈希值字符串,也就是区块头当中的Hash,格式如下:
a8fdc205a9f19cc1c7507a60c4f01b13d11d7fd0
区块与Hash是一一对应的,Hash可以当做是区块的唯一标识。
不同的区块之间是如何进行关联的呢?依靠Hash和PreHash来关联。每一个区块的PreHash和前一个区块的Hash值是相等的。
为什么要计算区块的哈希值呢?
既然区块链是一个链状结构,就必然存在链条的头节点(第一个区块)和尾节点(最后一个区块)。一旦有人计算出区块链最新数据信息的哈希值,相当于对最新的交易记录进行打包,新的区块会被创建出来,衔接在区块链的末尾。
新区块头的Hash就是刚刚计算出的哈希值,PreHash等于上一个区块的Hash。区块体的Data存储的是打包前的交易记录,这部分数据信息已经变得不可修改。
这个计算Hash值,创建新区块的过程就叫做挖矿。
用于进行海量计算的服务器,叫做矿机。
操作计算的工作人员,叫做矿工。
计算哈希值究竟难在哪里?咱们来做一个最粗浅的解释,哈希值计算的公式如下:
Hash = SHA-256(最后一个区块的Hash + 新区块基本信息 + 交易记录信息 + 随机数)
其中,交易记录信息也是一串哈希值,它的计算涉及到一个数据结构 Merkle Tree。有兴趣的小伙伴可以查阅相关资料,我们暂时不做展开介绍。
这里关键的计算难点在于随机数的生成。猥琐的区块链发明者为了增大Hash的计算难度,要求Hash结果的前72bit必须都是0,这个几率实在是太小太小。
由于(最后一个区块的Hash + 新区块基本信息 + 交易记录信息)是固定的,所以能否获得符合要求的Hash,完全取决于随机数的值。挖矿者必须经过海量计算,反复生成随机数进行“撞大运”一般的尝试,才有可能得到正确的Hash,从而挖矿成功。
同时,区块头内还包含着一个动态的难度系数,当全世界的硬件计算能力越来越快的时候,区块链的难度系数也会水涨船高,使得全网平均每10分钟才能产生出一个新区块。
小伙伴们明白挖矿有多么难了吧?需要补充的是,不同的区块链应用在细节上是不同的,这里所描述的挖矿规则是以比特币为例。
区块链的应用
比特币(BitCoin)的概念最初由中本聪于2008年提出,而后根据这一思路设计发布了开源软件以及建构其上的P2P网络。比特币是一种P2P形式的数字货币。点对点的传输意味着一个去中心化的支付系统。
什么是P2P网络呢?
传统的货币都是由中央银行统一发行,所有的个人储蓄也是由银行统一管理,这是典型的中心化系统。
而比特币则是部署在一个全世界众多对等节点组成的去中心化网络之上。每一个节点都有资格对这种数字货币进行记录和发行。
至于比特币底层的数据存储,正是基于了区块链技术。比特币的每一笔交易,都对应了区块体数据中的一行,简单的示意如下:
交易记录的每一行都包含时间戳、交易明细、数字签名。
表格中只是为了方便理解。实际存储的交易明细是匿名的,只会记录支付方和收款方的钱包地址。
至于数字签名呢,可以理解为每一条单笔交易的防伪标识,由非对称加密算法所生成。
接下来说一说比特币矿工的奖励:
比特币协议规定,挖到新区块的矿工将获得奖励,从2008年起是50个比特币,然后每4年减半,目前2018年是12.5个比特币。流通中新增的比特币都是这样诞生的,也难怪大家对挖掘比特币的工作如此趋之若鹜!
区块链的优势和劣势
区块链的优势:
1.去中心化
区块链不依赖于某个中心节点,整个系统的数据由全网所有对等节点共同维护,都可以进行数据的存储和检验。这样一来,除非攻击者黑掉全网半数以上的节点,否则整个系统是不会遭到破坏的。
2.信息不可篡改
区块内的数据是无法被篡改的。一旦数据遭到篡改哪怕一丁点,整个区块对应的哈希值就会随之改变,不再是一个有效的哈希值,后面链接的区块也会随之断裂。
区块链的劣势:
1.过度消耗能源
想要生成一个新的区块,必须要大量服务器资源进行大量无谓的尝试性计算,严重耗费电能。
2.信息的网络延迟
以比特币为例,任何一笔交易数据都需要同步到其他所有节点,同步过程中难免会受到网络传输延迟的影响,带来较长的耗时。
几点补充:
1.本漫画部分内容参考了阮一峰的博文《区块链入门教程》,感谢这位大神的科普。
2.由于篇幅有限,关于Merkle Tree 和 非对称加密 的知识暂时没有展开细讲,有兴趣的小伙伴们可以查阅资料进行更深一步的学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18