京公网安备 11010802034615号
经营许可证编号:京B2-20210330
浅谈插入排序算法在Python程序中的实现及简单改进
这篇文章主要介绍了插入排序算法在Python程序中的实现及简单改进,插入排序算法的最差时间复杂度为O(n^2),最优时间复杂度为O(n),存在一定的优化空间,需要的朋友可以参考下
Python实现插入排序的一般范例为:
#coding=cp936
#coding=cp936
#插入排序算法
def InsertionSort(A):
for j in range(1,len(A)):
key = A[j]
i = j-1
#向前查找插入位置
while i>=0 and A[i]>key:
A[i+1] = A[i]
i = i-1
A[i+1] = key
#初始化输入数据
A = []
input = raw_input('please input some numbers:') #输入逗号分隔整数列 如:7,6,5,1,8,34
for item in input.split(','):
A.append(int(item))
InsertionSort(A)#插入排序
print A
插入算法的原理是:当前元素和已经排序好的部分比较,满足条件时插入,插入点之后的元素全部往后移。
然而,我也正是受这个描述的误导,在实现的时候走了一些弯路。比如有以下列表:
test = [2, 5, 11, 21, 10, 18, 24]
比如当前元素是10,我在开最初的实现思路是从列表的第一个元素开始,一直比较到元素11才找到合适位置.这样做最终是可以实现排序的,但是有一个问题,就是当我把10插入11的位置之后,11和21都需要往后移,这又需要另一个循环,实现如下:
def insertSort(sort_list):
list_length = len(sort_list)
if list_length < 2 :
return sort_list
for i in range(1,list_length):
key = sort_list[i]
j = 0
while j < i:
if sort_list[j] > key:
for k in range(i,j,-1):
sort_list[k] = sort_list[k-1]
sort_list[j] = key
break
j += 1
return sort_list
首先,引入了三个循环变量以及三层循环,效率较低;其次是代码结构会比较混乱,需要改进。
后来我想能不能比较完一个元素就把它移到合适的位置,好如去超市买水果,手里拿到不合适的,总会直接把它放到一边,不会再碰它。具体到算法实现,还用上面的列表举例,当前元素是10,先跟相邻的21比较,发现21比10大,则21往后移动一位,即移到10所在位置;然后10和11比较,又会把11往后移动一位;在比较到元素5时,发现已经找到了10应该存放的位置,而此时移动也随之完成。
代码实现如下:
def insertSort(sort_list):
list_length = len(sort_list)
if list_length < 2 :
return sort_list
for i in range(1,list_length):
key = sort_list[i]
j = i - 1
while j >=0 and sort_list[j] > key:
sort_list[j+1] = sort_list[j]
j -= 1
sort_list[j+1] = key
return sort_list
孰优孰劣,大家对比便知。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29