
大数据是未来营销的救命稻草
大数据!大数据!现在这个词成了各大门户网站各种营销教材出现频率最高的词,于是疯狂的刮起了一阵大数据风潮,特别对大数据在消费者前期调研预测方面所谓功效的大肆渲染。美国《纸牌屋》在成功运用了所谓大数据分析之后,严格定制出来的作品大受欢迎,但我们仅凭星星点点的小规模成功就足以肯定,大数据时代,真是未来营销的救命稻草?那我真要说,还高兴太早!我在这里就不列举各种主流媒介对大数据趋之若骛的各种溢美之词,因为那些都听到耳朵起茧!侧重于过于渲染大数据在消费者前期预测调研这点上,笔者只想说几点:
第一、大数据=大消耗
我们敞开天窗说亮话,做生意哪有不计成本的,得,这大数据还就真是个耗钱的主。从搜集数据成本来说,各大门户网站,各种数据挖掘公司层出不穷,设计各种工具如狗仔队似的巴不得把消费者的底牌窥到极至,那场面堪称宏大,各大门户得建立各种数据部门,这是钱吧?企业主找外包数据公司,这也是钱吧?各种工具用上,工作人员不眠不休盯着,那微博说话用什么词,各种数据模型分析、有的公司甚至想了解完全中国的数据,老大,还要多维度的,试问您真有钱,况且你要么干脆和全国人民说开个数据端每天把数据传给您得了,这样您就可以分分秒秒掌握全国人民消费者的动态,试问,这可能么?您得有多土豪啊?
另外,顺便一提一般线下数据搜集公司,通常采用布各种小分点,分区送试用品送奖品的方式搜集用户体验样本,知名快消企业主尤其如此,这块的付出和投入也是相当的大,且先不说得回来的数据有否有用,但就对这块数据有需求的企业主来说,只要您想得到所谓深入数据,那么您付出的成本也非常大,特别是在今天各个数据终端这么发达和多样的前提下。时至今日,经济慢行,在营销费用里,除了广告、PR、这块费用的上涨依旧在侵蚀着企业主的口袋,各位还是忧着点好。
第二、大数据=朦胧美
对于大数据样本调查的精确度和深度在这里是要提出疑问的。仅仅是数据范围够宽够广就够了么?仅仅是数据调查的项目类别够多就够了么?答案从来没有那么简单!从现在的调查方式和样本采集来说,就存在很多数据的漏洞,包括了线上和线下:
其一、数据调查公司抽取的样本足以有代表性么?据我所知,单举某快消线下调查样品来说就存在问题,例如尿布基本上样品发给的是没用过这个牌子的一组人,她们参与调查的动机仅仅是为了赢得样品和之后的奖品,仅此而已,那么认真回答的可能性就不大,消费意向性也不大,这样的样本调查等于没有做!
其二、在数据调研公司我们常说两个词,定性和定量,这些一般是用来做数据分析比较常规的基准词,但笔者要说的是定量和变量!消费者对一个事物的认知和感觉它是有定量和变量的,通常大数据调查出来的是定量,所谓大部分人一般的看法,可却忽略人的思维的随时变化的变量。比如今天小王觉得挑沙发在乎的是舒适度,明天小王可能听朋友谈起沙发,他又觉得在乎的是沙发的颜色和款式,后天小王也许看了某本杂志又觉得在乎的是档次感,各种变。所以消费者是观念是流动的,大数据仅仅是某一时刻或者时期消费者的喜好和观点,但一旦脱离那个时刻,数据的可变性便体现不出来了,因为人是时刻在变的,这点大数据永远追不上,即使追也很辛苦。
其三、大数据仅仅是统计消费者行为结果和表现频次和偏好,调查不出消费者潜在观念的深刻的观点,因为这个也是在变的,再举小王的例子,小王在微博发几张图,小狗,树和阳光,你能说他就是环保主义者或者素食主义者?信息如此碎片分布,机器的抓取和解读还达不到深度解读的阶段,即使某天仿佛达到了,那也还是存在变量的问题。
第三、大数据=陷入主流雷同,扼杀创新的多元性
试想如果到时候大部分企业主都选择使用大数据,而大部分的数据公司也就那几家,那会出现什么局面?大家可以不难想象,得到的数据结果会基本趋于雷同,因为国内就兴跟风,结果一群企业主会发现,怎么它的产品和我的会象,结果一问才知找的外包数据公司都一家么…那么不是又陷入红海了么?
而这个时候,那些不用大数据的企业反而有些突出重围,他们可以由着他们的小众市场,跳脱出趋于雷同的局面造就独特的差异产品,同时取得一定的市场份额。之后陆续成为主流市场的新军。现实不就有麦包包这类一直专注于产品研发的成功者么?他们也没一天盯着消费者数据看。
而对于依然执着于大数据的主流企业主那里,大数据的依赖必然会对该企业主本身对其他产品创新可能性带来一定的束缚,但不可避免,这些主流公司依然会占据相当的主流市场,而这样也必然波及到其他中小企业的市场,扼杀了一些创新型中小企业的生存空间,消灭了一定的市场创新的多元性,特别是对艺术类和文化类市场来说尤其如此。
对大数据,笔者并非一秆子打到底,但仅仅是想说做好新时代的营销,只依靠这个不是一个出路,因为消费者是活的,不是木偶,不是任由电脑提取的数据而已!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01