
基于python yield机制的异步操作同步化编程模型
本文总结下如何在编写python代码时对异步操作进行同步化模拟,从而提高代码的可读性和可扩展性。
游戏引擎一般都采用分布式框架,通过一定的策略来均衡服务器集群的资源负载,从而保证服务器运算的高并发性和CPU高利用率,最终提高游戏的性能和负载。由于引擎的逻辑层调用是非抢占式的,服务器之间都是通过异步调用来进行通讯,导致游戏逻辑无法同步执行,所以在代码层不得不人为地添加很多回调函数,使一个原本完整的功能碎片化地分布在各个回调函数中。
异步逻辑
以游戏中的副本评分逻辑为例,在副本结束时副本管理进程需要收集副本中每个玩家的战斗信息,再结合管理进程内部的统计信息最终给出一个副本评分,发放相应奖励。因为每个玩家实体都随机分布在不同进程中,所以管理进程需要通过异步调用来获取玩家身上的战斗信息。
实现代码如下所示:
# -*- coding: gbk -*-
import random
# 玩家实体类
class Player(object):
def __init__(self, entityId):
super(Player, self).__init__()
# 玩家标识
self.entityId = entityId
def onFubenEnd(self, mailBox):
score = random.randint(1, 10)
print "onFubenEnd player %d score %d"%(self.entityId, score)
# 向副本管理进程发送自己的id和战斗信息
mailBox.onEvalFubenScore(self.entityId, score)
# 副本管理类
class FubenStub(object):
def __init__(self, players):
super(FubenStub, self).__init__()
self.players = players
def evalFubenScore(self):
self.playerRelayCnt = 0
self.totalScore = 0
# 通知每个注册的玩家,副本已经结束,索取战斗信息
for player in self.players:
player.onFubenEnd(self)
def onEvalFubenScore(self, entityId, score):
# 收到其中一个玩家的战斗信息
print "onEvalFubenScore player %d score %d"%(entityId, score)
self.playerRelayCnt += 1
self.totalScore += score
# 当收集完所有玩家的信息后,打印评分
if len(self.players) == self.playerRelayCnt:
print 'The fuben totalScore is %d'%self.totalScore
if __name__ == '__main__':
# 模拟创建玩家实体
players = [Player(i) for i in xrange(3)]
# 副本开始时,每个玩家将自己的MailBox注册到副本管理进程
fs = FubenStub(players)
# 副本进行中
# ....
# 副本结束,开始评分
fs.evalFubenScore()
代码简化了副本评分逻辑的实现,其中Player类表示游戏的玩家实体,在游戏运行时无缝地在不同服务器中切换,FubenStub表示副本的管理进程,在副本刚开始的时候该副本内所有玩家会将自己的MailBox注册到管理进程中,其中MailBox表示各个实体的远程调用句柄。在副本结束时,FubenStub首先向各个玩家发送副本结束消息,同时请求玩家的战斗信息,玩家在得到消息后,将自己的战斗信息发送给FubenStub;然后当FubenStub收集完所有玩家的信息后,最终打印副本评分。
同步逻辑
如果Player和FubenStub在同一进程中的话,那所有的操作都可以同步完成,在FubenStub向玩家发送副本结束消息的同时可以马上得到该玩家的战斗信息,实现代码如下所示:
从以上两份代码可以看到由于异步操作,FubenStub中的评分逻辑人为地分成两个功能点:1)向玩家发送副本结束消息;2)接受玩家的战斗信息;并且两个功能点分布在两个不同的函数中。如果游戏逻辑一旦复杂,势必会造成功能点分散,出现过多onXXX异步回调函数,最终导致代码的开发成本和维护成本提高,可读性和可扩展性下降。
如果有一种方法,可以让函数在异步调用时暂时挂起,并且在回调函数得到返回值后恢复执行,那么就可以用同步化的编程模式开发异步逻辑。
yield 关键字
yield 是 Python中的一个关键字,凡是函数体中出现了 yield 关键字, Python将改变整个函数的上下文,调用该函数不再返回值, 而是一个生成器对象。只有调用这个生成器的迭代函数next才能开始执行生成器对象,当生成器对象执行到包含 yield 表达式时, 函数将暂时挂起,等待下一次next调用来恢复执行,具体机制如下:
1)调用生成器对象的next方法,启动函数执行;
2)当生成器对象执行到包含 yield 表达式时, 函数挂起;
3)下一次 next 函数调用又会驱动该生成器对象继续执行此后的语句, 直到遇见下一个 yield 再次挂起;
4)如果某次 next 调用驱动了生成器继续执行, 而此后函数正常结束,生成器会抛出 StopIteration 异常;
如下代码所示:
def f():
print "Before first yield"
yield 1
print "Before second yield"
yield 2
print "After second yield"
g = f()
print "Before first next"
g.next()
print "Before second next"
g.next()
print "Before third yield"
g.next()
执行结果为:
Before first next
Before first yield
Before second next
Before second yield
Before third yield
After second yield
StopIteration
哈,有了让函数暂时挂起的机制,最后就剩下如何传递异步调用的返回值问题了。其实生成器的next函数已经实现了将参数从生成器对象内部向外传递的机制,并且python还提供了一个send函数将参数从外向生成器对象内部传递的机制,具体机制如下:
1) 调用next 函数驱动生成器时, next会同时等待生成器中下一个 yield 挂起,并将该yield后面的参数返回给next;
2)往生成器中传递参数,需要将next函数替换成send,此时send的功能与next相同(驱动生成器执行,等待返回值),同时send将后面的参数传递给生成器内部之前挂起的yield;
如下代码所示:
def f():
msg = yield 'first yield msg'
print "generator inner receive:", msg
msg = yield 'second yield msg'
print "generator inner receive:", msg
g = f()
msg = g.next()
print "generator outer receive:", msg
msg = g.send('first send msg')
print "generator outer receive:", msg
g.send('second send msg')
执行结果为:
generator outer receive: first yield msg
generator inner receive: first send msg
generator outer receive: second yield msg
generator inner receive: second send msg
StopIteration
同步化实现
好了,万事俱备只欠东风,下面就是简单对yield机制进行工程上封装以方便之后开发。下面的代码提供了一个叫IFakeSyncCall的interface,所有包含异步操作的逻辑类都可以继承这个接口:
class IFakeSyncCall(object):
def __init__(self):
super(IFakeSyncCall, self).__init__()
self.generators = {}
@staticmethod
def FAKE_SYNCALL():
def fwrap(method):
def fakeSyncCall(instance, *args, **kwargs):
instance.generators[method.__name__] = method(instance, *args, **kwargs)
func, args = instance.generators[method.__name__].next()
func(*args)
return fakeSyncCall
return fwrap
def onFakeSyncCall(self, identify, result):
try:
func, args = self.generators[identify].send(result)
func(*args)
except StopIteration:
self.generators.pop(identify)
其中interface中属性generators用来保存类中已经开始执行的生成器对象;函数FAKE_SYNCALL是一个decorator,装饰类中包含有yield的函数,改变函数的调用上下文,在fakeSyncCall内部封装了对生成器对象的next调用;函数onFakeSyncCall封装了所有onXXX函数的逻辑,其他实体通过调用这个函数传递异步回调的返回值。
下面就是经过同步化改进后的异步副本评分逻辑代码:
# -*- coding: gbk -*-
import random
class Player(object):
def __init__(self, entityId):
super(Player, self).__init__()
self.entityId = entityId
def onFubenEnd(self, mailBox):
score = random.randint(1, 10)
print "onFubenEnd player %d score %d"%(self.entityId, score)
mailBox.onFakeSyncCall('evalFubenScore', (self.entityId, score))
class FubenStub(IFakeSyncCall):
def __init__(self, players):
super(FubenStub, self).__init__()
self.players = players
@IFakeSyncCall.FAKE_SYNCALL()
def evalFubenScore(self):
totalScore = 0
for player in self.players:
entityId, score = yield (player.onFubenEnd, (self,))
print "onEvalFubenScore player %d score %d"%(entityId, score)
totalScore += score
print 'the totalScore is %d'%totalScore
if __name__ == '__main__':
players = [Player(i) for i in xrange(3)]
fs = FubenStub(players)
fs.evalFubenScore()
比较evalFubenScore函数,基本已经和原本的同步逻辑代码相差无几。
利用yield机制实现同步化编程模型的另外一个优点是可以保证所有异步调用的逻辑串行化,从而保证数据的一致性和有效性,特别是在各种异步初始化流程中可以摒弃传统的timer sleep机制,从源头上扼杀一些隐藏很深的由于数据不一致性所导致的bug。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PyTorch 核心机制:损失函数与反向传播如何驱动模型进化 在深度学习的世界里,模型从 “一无所知” 到 “精准预测” 的蜕变,离 ...
2025-07-252025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-25从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-25用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18