京公网安备 11010802034615号
经营许可证编号:京B2-20210330
企业通过大数据获得更多的业务拓展
如今谈及企业信息化,大数据当之无愧的成为今天最热门的技术之一。信息化对于企业有多重要?这个问题放在三十年前,可能多数的国内企业并不十分明了,但是如今再问及这个问题,相信绝大多数企业的普通员工都可以出口成章。近些年来国内企业对于信息化的关注程度越发加深,国内企业的信息化普及度也得到迅速提升。中国已经成为众多跨国软件企业的关注焦点。
第一,物联网及由传感器驱动的信息网的不断发展。物联网已经成了大家关注的又一新兴名词,伴随着物联网不断发展,物联网的各个终端每分每秒都将产生海量的数据,这无疑需要大数据技术对这些信息进行分析处理,以发挥物联网的效用。这也就促进了大数据技术的不断推进。
第二,云计算及社交媒体普及。云计算与大数据自出生以来似乎就是"好伴侣",大数据的发展刺激了云计算技术的不断发展,而云计算的迅速发展和普及也为大数据的应用提供了更好的保障,两者在某些方面起到了相互推进的作用。社交媒体运用大数据后能够为用户提供更好的服务和更高便利,当社交网络成为趋势,大数据技术也不可避免的被推到"风口浪尖"。
第三,迅速增长的线上交易。近年来淘宝、京东等线上交易平台不断涌现,我国电子商务领域已经有了突飞猛进的发展。大数据技术为我国的电子商务营销提供了最精准、最有效的支撑。通过大数据技术,对客户的消费行为及喜好进行分析,可以做到消费品的精准推荐,进而促进消费。在今年的SAP中国商业同略会主题演讲中,就多次提及中国的"双十一",双十一的消费数额可谓惊人,中国线上交易数量的激增也成为SAP将大数据战略规划作为其中国市场战略的重点原因之一。
采访过程中,路凯文还表示,在以上的三方面,中国都毫无疑问是整个世界的领导者。首先,因为中国是世界范围内最大的制造业国家,并且在智能设备的使用方面,中国也是世界的领先者。其次就是社交媒体方面,"正如SAP联席CEO孟鼎铭先生说的,在中国的社交媒体数量要远远超过世界上任何一个国家。"最后,路凯文感叹道:"世界上再找不出第二个国家,在线上买卖的金额能够像中国这么大。"这些都促使中国大数据技术成为代表世界的"完美风暴"。
如今互联网上大概有150亿的终端设备或人与互联网进行互联,到2020年左右,这个数字将增加到500亿,也就是说,将有500亿的物件和设备是互相联系的。因此大数据将拥有对工作及生活产生极大影响和改变的能力。"我为身处于这样一个大数据的时代感到非常的兴奋。"路凯文说。
正是看到了大数据的巨大发展潜力和中国庞大的市场需求,众多厂商纷纷开始耕耘中国的大数据市场。SAP也不例外,面对大数据技术的蓬勃发展,SAP推出了其全新的SAPHANA解决方案,以帮助开拓其在中国的大数据市场。
在今年的SAP中国商业同略会上,SAP的各位高层就着重介绍了SAPHANA解决方案。SAPHANA基于云计算及大数据为企业提供了十分便捷、高效并易于管理的企业平台,无论是在存储、部署和计算分析方面都有涉猎,看似被打造成了一个全能的平台,但这可能会跟客户传统的数据库使用方式并不太一样,当被问及SAP将如何让客户接受这种方式时,路凯文利用苹果手机举了一个生动的比喻,"在苹果推出iPhone之前,手机就是手机,不是智能电话,数码相机也仅是相机而已。当时如果大家想要上网都需要通过计算机浏览。苹果的伟大之处不是在于他创造了一部电话,而是他选择了那些对于我们非常重要并且非常习以为常的功能,将他们捆绑结合在一个平台中。同样的道理,SAP现在所做的事情和苹果所做的事情有异曲同工之妙。" 路凯文表示,SAP在技术方面所做的努力都是为了帮助客户在使用这些技术时能够识别新的商业机会,能够创造出新的商业价值。因此在设计过程中一切都是以客户的需要为前提的,所以SAP也会认真倾听客户在业务或技术使用上的一些需求和想法。SAP亚太及日本区数据库、技术、分析和移动平台解决方案部高级副总裁麦马翰也说道:"在中国,我们做了很多HANA的推广及相关的教育,并且通过多方合作来对客户进行培训,以便其了解SAPHANA应用后,不需要操心很多关于技术方面或者系统架构方面的事情。所以SAPHANA的好处也就是使用户不再需要花过多的时间和精力去关注整个技术的架构,而可以把更多的精力放在业务上。"
最后,面对SAP是否能够改变用户以往的使用习惯并在大数据应用方面切实帮助企业的质疑,麦马翰表示,SAP拥有40年的企业服务经验,了解各行各业的业务及企业发展特点,这将成为他们拓展中国市场的巨大优势。"这是我们非常重要的优势,我们知道这些行业的情况,也知道如何帮助这些行业客户在他们以往开展业务的基础之上,基于新的大数据,从中获取新的机会。"麦马翰说到。
中国的大数据市场的潜力是无限的,正如SAP这样的国际厂商正在不断涌入中国广阔的市场当中。相信今后越来越的企业会通过大数据技术完善自身的企业信息化,并且通过大数据技术获得更多的发展机会和业务拓展。现在,大数据技术无疑已经成了企业的新兴"淘金术"。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01