京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Python利用多进程将大量数据放入有限内存的教程
这是一篇有关如何将大量的数据放入有限的内存中的简略教程。
与客户工作时,有时会发现他们的数据库实际上只是一个csv或Excel文件仓库,你只能将就着用,经常需要在不更新他们的数据仓库的情况下完成工作。大部分情况下,如果将这些文件存储在一个简单的数据库框架中或许更好,但时间可能不允许。这种方法对时间、机器硬件和所处环境都有要求。
下面介绍一个很好的例子:假设有一堆表格(没有使用Neo4j、MongoDB或其他类型的数据库,仅仅使用csvs、tsvs等格式存储的表格),如果将所有表格组合在一起,得到的数据帧太大,无法放入内存。所以第一个想法是:将其拆分成不同的部分,逐个存储。这个方案看起来不错,但处理起来很慢。除非我们使用多核处理器。
目标
这里的目标是从所有职位中(大约1万个),找出相关的的职位。将这些职位与政府给的职位代码组合起来。接着将组合的结果与对应的州(行政单位)信息组合起来。然后用通过word2vec生成的属性信息在我们的客户的管道中增强已有的属性。
这个任务要求在短时间内完成,谁也不愿意等待。想象一下,这就像在不使用标准的关系型数据库的情况下进行多个表的连接。
数据
示例脚本
下面的是一个示例脚本,展示了如何使用multiprocessing来在有限的内存空间中加速操作过程。脚本的第一部分是和特定任务相关的,可以自由跳过。请着重关注第二部分,这里侧重的是multiprocessing引擎。
#import the necessary packages
import pandas as pd
import us
import numpy as np
from multiprocessing import Pool,cpu_count,Queue,Manager
# the data in one particular column was number in the form that horrible excel version
# of a number where '12000' is '12,000' with that beautiful useless comma in there.
# did I mention I excel bothers me?
# instead of converting the number right away, we only convert them when we need to
def median_maker(column):
return np.median([int(x.replace(',','')) for x in column])
# dictionary_of_dataframes contains a dataframe with information for each title; e.g title is 'Data Scientist'
# related_title_score_df is the dataframe of information for the title; columns = ['title','score']
### where title is a similar_title and score is how closely the two are related, e.g. 'Data Analyst', 0.871
# code_title_df contains columns ['code','title']
# oes_data_df is a HUGE dataframe with all of the Bureau of Labor Statistics(BLS) data for a given time period (YAY FREE DATA, BOO BAD CENSUS DATA!)
def job_title_location_matcher(title,location):
try:
related_title_score_df = dictionary_of_dataframes[title]
# we limit dataframe1 to only those related_titles that are above
# a previously established threshold
related_title_score_df = related_title_score_df[title_score_df['score']>80]
#we merge the related titles with another table and its codes
codes_relTitles_scores = pd.merge(code_title_df,related_title_score_df)
codes_relTitles_scores = codes_relTitles_scores.drop_duplicates()
# merge the two dataframes by the codes
merged_df = pd.merge(codes_relTitles_scores, oes_data_df)
#limit the BLS data to the state we want
all_merged = merged_df[merged_df['area_title']==str(us.states.lookup(location).name)]
#calculate some summary statistics for the time we want
group_med_emp,group_mean,group_pct10,group_pct25,group_median,group_pct75,group_pct90 = all_merged[['tot_emp','a_mean','a_pct10','a_pct25','a_median','a_pct75','a_pct90']].apply(median_maker)
row = [title,location,group_med_emp,group_mean,group_pct10,group_pct25, group_median, group_pct75, group_pct90]
#convert it all to strings so we can combine them all when writing to file
row_string = [str(x) for x in row]
return row_string
except:
# if it doesnt work for a particular title/state just throw it out, there are enough to make this insignificant
'do nothing'
这里发生了神奇的事情:
#runs the function and puts the answers in the queue
def worker(row, q):
ans = job_title_location_matcher(row[0],row[1])
q.put(ans)
# this writes to the file while there are still things that could be in the queue
# this allows for multiple processes to write to the same file without blocking eachother
def listener(q):
f = open(filename,'wb')
while 1:
m = q.get()
if m =='kill':
break
f.write(','.join(m) + 'n')
f.flush()
f.close()
def main():
#load all your data, then throw out all unnecessary tables/columns
filename = 'skill_TEST_POOL.txt'
#sets up the necessary multiprocessing tasks
manager = Manager()
q = manager.Queue()
pool = Pool(cpu_count() + 2)
watcher = pool.map_async(listener,(q,))
jobs = []
#titles_states is a dataframe of millions of job titles and states they were found in
for i in titles_states.iloc:
job = pool.map_async(worker, (i, q))
jobs.append(job)
for job in jobs:
job.get()
q.put('kill')
pool.close()
pool.join()
if __name__ == "__main__":
main()
由于每个数据帧的大小都不同(总共约有100Gb),所以将所有数据都放入内存是不可能的。通过将最终的数据帧逐行写入内存,但从来不在内存中存储完整的数据帧。我们可以完成所有的计算和组合任务。这里的“标准方法”是,我们可以仅仅在“job_title_location_matcher”的末尾编写一个“write_line”方法,但这样每次只会处理一个实例。根据我们需要处理的职位/州的数量,这大概需要2天的时间。而通过multiprocessing,只需2个小时。
虽然读者可能接触不到本教程处理的任务环境,但通过multiprocessing,可以突破许多计算机硬件的限制。本例的工作环境是c3.8xl ubuntu ec2,硬件为32核60Gb内存(虽然这个内存很大,但还是无法一次性放入所有数据)。这里的关键之处是我们在60Gb的内存的机器上有效的处理了约100Gb的数据,同时速度提升了约25倍。通过multiprocessing在多核机器上自动处理大规模的进程,可以有效提高机器的利用率。也许有些读者已经知道了这个方法,但对于其他人,可以通过multiprocessing能带来非常大的收益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27