
Python利用多进程将大量数据放入有限内存的教程
这是一篇有关如何将大量的数据放入有限的内存中的简略教程。
与客户工作时,有时会发现他们的数据库实际上只是一个csv或Excel文件仓库,你只能将就着用,经常需要在不更新他们的数据仓库的情况下完成工作。大部分情况下,如果将这些文件存储在一个简单的数据库框架中或许更好,但时间可能不允许。这种方法对时间、机器硬件和所处环境都有要求。
下面介绍一个很好的例子:假设有一堆表格(没有使用Neo4j、MongoDB或其他类型的数据库,仅仅使用csvs、tsvs等格式存储的表格),如果将所有表格组合在一起,得到的数据帧太大,无法放入内存。所以第一个想法是:将其拆分成不同的部分,逐个存储。这个方案看起来不错,但处理起来很慢。除非我们使用多核处理器。
目标
这里的目标是从所有职位中(大约1万个),找出相关的的职位。将这些职位与政府给的职位代码组合起来。接着将组合的结果与对应的州(行政单位)信息组合起来。然后用通过word2vec生成的属性信息在我们的客户的管道中增强已有的属性。
这个任务要求在短时间内完成,谁也不愿意等待。想象一下,这就像在不使用标准的关系型数据库的情况下进行多个表的连接。
数据
示例脚本
下面的是一个示例脚本,展示了如何使用multiprocessing来在有限的内存空间中加速操作过程。脚本的第一部分是和特定任务相关的,可以自由跳过。请着重关注第二部分,这里侧重的是multiprocessing引擎。
#import the necessary packages
import pandas as pd
import us
import numpy as np
from multiprocessing import Pool,cpu_count,Queue,Manager
# the data in one particular column was number in the form that horrible excel version
# of a number where '12000' is '12,000' with that beautiful useless comma in there.
# did I mention I excel bothers me?
# instead of converting the number right away, we only convert them when we need to
def median_maker(column):
return np.median([int(x.replace(',','')) for x in column])
# dictionary_of_dataframes contains a dataframe with information for each title; e.g title is 'Data Scientist'
# related_title_score_df is the dataframe of information for the title; columns = ['title','score']
### where title is a similar_title and score is how closely the two are related, e.g. 'Data Analyst', 0.871
# code_title_df contains columns ['code','title']
# oes_data_df is a HUGE dataframe with all of the Bureau of Labor Statistics(BLS) data for a given time period (YAY FREE DATA, BOO BAD CENSUS DATA!)
def job_title_location_matcher(title,location):
try:
related_title_score_df = dictionary_of_dataframes[title]
# we limit dataframe1 to only those related_titles that are above
# a previously established threshold
related_title_score_df = related_title_score_df[title_score_df['score']>80]
#we merge the related titles with another table and its codes
codes_relTitles_scores = pd.merge(code_title_df,related_title_score_df)
codes_relTitles_scores = codes_relTitles_scores.drop_duplicates()
# merge the two dataframes by the codes
merged_df = pd.merge(codes_relTitles_scores, oes_data_df)
#limit the BLS data to the state we want
all_merged = merged_df[merged_df['area_title']==str(us.states.lookup(location).name)]
#calculate some summary statistics for the time we want
group_med_emp,group_mean,group_pct10,group_pct25,group_median,group_pct75,group_pct90 = all_merged[['tot_emp','a_mean','a_pct10','a_pct25','a_median','a_pct75','a_pct90']].apply(median_maker)
row = [title,location,group_med_emp,group_mean,group_pct10,group_pct25, group_median, group_pct75, group_pct90]
#convert it all to strings so we can combine them all when writing to file
row_string = [str(x) for x in row]
return row_string
except:
# if it doesnt work for a particular title/state just throw it out, there are enough to make this insignificant
'do nothing'
这里发生了神奇的事情:
#runs the function and puts the answers in the queue
def worker(row, q):
ans = job_title_location_matcher(row[0],row[1])
q.put(ans)
# this writes to the file while there are still things that could be in the queue
# this allows for multiple processes to write to the same file without blocking eachother
def listener(q):
f = open(filename,'wb')
while 1:
m = q.get()
if m =='kill':
break
f.write(','.join(m) + 'n')
f.flush()
f.close()
def main():
#load all your data, then throw out all unnecessary tables/columns
filename = 'skill_TEST_POOL.txt'
#sets up the necessary multiprocessing tasks
manager = Manager()
q = manager.Queue()
pool = Pool(cpu_count() + 2)
watcher = pool.map_async(listener,(q,))
jobs = []
#titles_states is a dataframe of millions of job titles and states they were found in
for i in titles_states.iloc:
job = pool.map_async(worker, (i, q))
jobs.append(job)
for job in jobs:
job.get()
q.put('kill')
pool.close()
pool.join()
if __name__ == "__main__":
main()
由于每个数据帧的大小都不同(总共约有100Gb),所以将所有数据都放入内存是不可能的。通过将最终的数据帧逐行写入内存,但从来不在内存中存储完整的数据帧。我们可以完成所有的计算和组合任务。这里的“标准方法”是,我们可以仅仅在“job_title_location_matcher”的末尾编写一个“write_line”方法,但这样每次只会处理一个实例。根据我们需要处理的职位/州的数量,这大概需要2天的时间。而通过multiprocessing,只需2个小时。
虽然读者可能接触不到本教程处理的任务环境,但通过multiprocessing,可以突破许多计算机硬件的限制。本例的工作环境是c3.8xl ubuntu ec2,硬件为32核60Gb内存(虽然这个内存很大,但还是无法一次性放入所有数据)。这里的关键之处是我们在60Gb的内存的机器上有效的处理了约100Gb的数据,同时速度提升了约25倍。通过multiprocessing在多核机器上自动处理大规模的进程,可以有效提高机器的利用率。也许有些读者已经知道了这个方法,但对于其他人,可以通过multiprocessing能带来非常大的收益。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15